University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Artikkelit
  • Yhteiskuntatieteellinen tiedekunta 31.12.2016 saakka
  • View Item
JYX > Artikkelit > Yhteiskuntatieteellinen tiedekunta 31.12.2016 saakka > View Item

Hippocampal ripple-contingent training accelerates trace eyeblink conditioning and retards extinction in rabbits

ThumbnailFinal Draft
View/Open
86.67Kb

Downloads:  
Show download detailsHide download details  
Nokia, M., Penttonen, M., & Wikgren, J. (2010). Hippocampal ripple-contingent training accelerates trace eyeblink conditioning and retards extinction in rabbits. The Journal of Neuroscience, 30 (34), 11486-11492. doi:10.1523/JNEUROSCI.2165-10.2010 Retrieved from http://www.jneurosci.org/cgi/content/abstract/30/34/11486?etoc
Published in
The Journal of Neuroscience
Authors
Nokia, Miriam |
Penttonen, Markku |
Wikgren, Jan
Date
2010
Discipline
Psykologia
Copyright
© 2010 the Authors. Published by Society for Neuroscience. Published in this repository with the kind permission of the publisher.

 
There are at least two distinct oscillatory states of the hippocampus that are related to distinct behavioral patterns. Theta (4–12 Hz) oscillation has been suggested to indicate selective attention during which the animal concentrates on some features of the environment while suppressing reactivity to others. In contrast, sharp-wave ripples (∼200 Hz) can be seen in a state in which the hippocampus is at its most responsive to any kind of afferent stimulation. In addition, external stimulation tends to evoke and reset theta oscillation, the phase of which has been shown to modulate synaptic plasticity in the hippocampus. Theoretically, training on a hippocampus-dependent learning task contingent upon ripples could enhance learning rate due to elevated responsiveness and enhanced phase locking of the theta oscillation. We used a brain–computer interface to detect hippocampal ripples in rabbits to deliver trace eyeblink conditioning and extinction trials selectively contingent upon them. A yoked control group was trained regardless of their ongoing neural state. Ripple-contingent training expedited acquisition of the conditioned response early in training and evoked stronger theta-band phase locking to the conditioned stimulus. Surprisingly, ripple-contingent training also resulted in slower extinction in well trained animals. We suggest that the ongoing oscillatory activity in the hippocampus determines the extent to which a stimulus can induce a phase reset of the theta oscillation, which in turn is the determining factor of learning rate in trace eyeblink conditioning. ...
Publisher
Society for Neuroscience
ISSN Search the Publication Forum
0270-6474
Keywords
hippokampus oskillaatio aivo-tietokoneliittymä oppiminen hippocampus oscillation brain-computer interface learning

Original source
http://www.jneurosci.org/cgi/content/abstract/30/34/11486?etoc

DOI
10.1523/JNEUROSCI.2165-10.2010
URI

http://urn.fi/URN:NBN:fi:jyu-201512154038

Metadata
Show full item record
Collections
  • Yhteiskuntatieteellinen tiedekunta 31.12.2016 saakka [462]
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services
Data Protection Description
Open Science Centre