Näytä suppeat kuvailutiedot

dc.contributor.authorReinikainen, Jaakko
dc.date.accessioned2015-11-27T06:35:29Z
dc.date.available2015-11-27T06:35:29Z
dc.date.issued2015
dc.identifier.isbn978-951-39-6429-0
dc.identifier.otheroai:jykdok.linneanet.fi:1504703
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/47847
dc.description.abstractEpidemiological studies can often be designed in several ways, some of which may be more optimal than others. Possible designs may differ in the required resources or the ability to provide reliable answers to the questions under study. In addition, once the data are collected, the selected modeling approach may affect how efficiently the data are utilized. The purpose of this dissertation is to investigate efficient designs and analysis meth ods in follow-up studies with longitudinal measurements. A key question is how to select optimally a subcohort for a new longitudinal covariate measurement if we cannot afford to measure the entire cohort. Another key question we consider is how to determine the reasonable number of longitudinal measurements. Different ways to utilize longitudinal covariate measurements in modeling cardiovascular disease (CVD) mortality are also studied. Follow-up data are modeled using parametric or semiparametric proportional haz ards models. Subcohort selections are carried out using optimality criteria initially developed for optimal experimental design. Measures of model discrimination are ap plied to plan the number of longitudinal measurements. The topics are studied using simulations and the East–West data, which are Finnish part of an international follow- up study in the field of cardiovascular epidemiology, the Seven Countries Study. This work demonstrates that the cost-efficiency of follow-up designs can be improved by careful planning. The proposed method for selecting optimal subcohorts is shown to outperform simple random sampling and it is demonstrated how the number of longi tudinal measurements can be determined using simulated data and data from previous similar studies. The results also indicate that individual-level changes and cumulative averages of classical risk factors are good predictors of CVD mortality.
dc.format.extent1 verkkoaineisto (45 sivua)
dc.language.isoeng
dc.publisherUniversity of Jyväskylä
dc.relation.ispartofseriesReport / University of Jyväskylä. Department of Mathematics and Statistics
dc.relation.isversionofJulkaistu myös painettuna.
dc.rightsIn Copyright
dc.subject.otheraikariippuvat kovariaatit
dc.subject.otherfollow-up study
dc.subject.othertime-varying covariates
dc.subject.otherlongitudinal measurements
dc.subject.otheroptimal design
dc.subject.otherdata collection
dc.subject.otherrisk prediction
dc.subject.othercardiovascular disease mortality
dc.titleEfficient design and modeling strategies for follow-up studies with time-varying covariates
dc.typedoctoral thesis
dc.identifier.urnURN:ISBN:978-951-39-6429-0
dc.type.dcmitypeTexten
dc.type.ontasotVäitöskirjafi
dc.type.ontasotDoctoral dissertationen
dc.contributor.tiedekuntaFaculty of Mathematics and Scienceen
dc.contributor.tiedekuntaMatemaattis-luonnontieteellinen tiedekuntafi
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.contributor.oppiaineTilastotiedefi
dc.subject.methodSeurantatutkimus
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.relation.issn1457-8905
dc.relation.numberinseries153
dc.rights.accesslevelopenAccess
dc.type.publicationdoctoralThesis
dc.subject.ysoepidemiologia
dc.subject.ysotutkimusmenetelmät
dc.subject.ysokustannustehokkuus
dc.subject.ysoseurantatutkimus
dc.subject.ysopitkittäistutkimus
dc.subject.ysokohorttitutkimus
dc.subject.ysotutkimusaineisto
dc.subject.ysodata
dc.subject.ysoanalyysimenetelmät
dc.subject.ysooptimaalisuus
dc.subject.ysosimulointi
dc.subject.ysoterveysriskit
dc.subject.ysoennusteet
dc.subject.ysosydän- ja verisuonitaudit
dc.subject.ysokuolleisuus
dc.rights.urlhttps://rightsstatements.org/page/InC/1.0/


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright