dc.contributor.author | Käenmäki, Antti | |
dc.contributor.author | Sahlsten, Tuomas | |
dc.contributor.author | Shmerkin, Pablo | |
dc.date.accessioned | 2015-10-23T07:17:09Z | |
dc.date.available | 2015-10-23T07:17:09Z | |
dc.date.issued | 2015 | |
dc.identifier.citation | Käenmäki, A., Sahlsten, T., & Shmerkin, P. (2015). Dynamics of the scenery flow and geometry of measures. <i>Proceedings of the London mathematical society</i>, <i>110</i>(5), 1248-1280. <a href="https://doi.org/10.1112/plms/pdv003" target="_blank">https://doi.org/10.1112/plms/pdv003</a> | |
dc.identifier.other | CONVID_24773144 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/47382 | |
dc.description.abstract | We employ the ergodic theoretic machinery of scenery flows to address classical
geometric measure theoretic problems on Euclidean spaces. Our main results include a sharp
version of the conical density theorem, which we show to be closely linked to rectifiability. Moreover,
we show that the dimension theory of measure-theoretical porosity can be reduced back to its
set-theoretic version, that Hausdorff and packing dimensions yield the same maximal dimension for
porous and even mean porous measures, and that extremal measures exist and can be chosen to
satisfy a generalized notion of self-similarity. These are sharp general formulations of phenomena
that had been earlier found to hold in a number of special cases. | fi |
dc.language.iso | eng | |
dc.publisher | Oxford University Press; London Mathematical Society | |
dc.relation.ispartofseries | Proceedings of the London mathematical society | |
dc.subject.other | scenery flow | |
dc.subject.other | measures | |
dc.title | Dynamics of the scenery flow and geometry of measures | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-201510213435 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2015-10-21T12:15:03Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 1248-1280 | |
dc.relation.issn | 0024-6115 | |
dc.relation.numberinseries | 5 | |
dc.relation.volume | 110 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © London Mathematical Society. This is a final draft version of an article whose final and definitive form has been published by London Mathematical Society. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.subject.yso | geometria | |
dc.subject.yso | matematiikka | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p8708 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3160 | |
dc.relation.doi | 10.1112/plms/pdv003 | |
dc.type.okm | A1 | |