Accuracy analysis of uncertain variational problems with analytical and machine learning methods
Abstract
Tässä tutkielmassa verrataan analyyttisien menetelmien ja koneoppimismallien toimivuutta epätarkkuudesta johtuvien virheiden kontrolloinnissa. Tarkasteltavana matemaattisena esimerkkiongelmana käytetään lineaarista variaatio-ongelmaa. Tuloksena havaitaan, että neuroverkot toimivat hyvin ja ovat käytäntöön mahdollisesti soveltuva keino tehdä virhearviointia.
Monille osittaisdifferentiaaliyhtälöille on johdettu analyyttisia kontrollointikeinoja viime vuosikymmenien aikana (katso [1], [2]). Ensimmäiset luvut käytämme analyyttisien virhearvioiden todistamiseen tunnettujen analyysin työkalujen avulla tarkasteltavalle variaatio-ongelmalle. Virhearvioita testataan numeerisesti ja huomataan, että vaikka analyyttiset rajat ovat varmoja ja halpoja laskennallisesti, ne ovat monesti toivottua epätarkempia.
Tutkielman toisessa osiossa luodaan koneoppimismalleja, joilla pyritään arvioimaan tarkalleen epätarkkuuden aiheuttamaa virhettä. Valittu koneoppimismalli on neuroverkko. Mallien kouluttamiseen käytetty data luodaan itse numeerisilla menetelmillä.
Viimeisessä luvussa verrataan analyyttisien metodien ja luotujen neuroverkkojen toimivuutta. Vertailussa käytetään koulutusdatasta eroavaa generoitua dataa jolle lasketaan analyyttiset rajat, numeeriset approksimaatiot ja neuroverkkojen tulokset. Havaitaan, että neuroverkot suoriutuvat tehtävästä niin hyvin, että voidaan sanoa niiden olevan kilpailullisia analyyttisien metodien kanssa. Jos vastaavia koneoppimismalleja pystytään luomaan vaikeammille moniulotteisille ongelmille, tämä menetelmä voi osoittautua varsin hyödylliseksi simuloinnissa ja insinöörityössä.
Main Author
Format
Theses
Master thesis
Published
2021
Subjects
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-202111195729Käytä tätä linkitykseen.
Language
English