Näytä suppeat kuvailutiedot

dc.contributor.authorChernov, Sergey
dc.contributor.authorCochez, Michael
dc.contributor.authorRistaniemi, Tapani
dc.date.accessioned2015-07-22T09:17:24Z
dc.date.available2015-07-22T09:17:24Z
dc.date.issued2015
dc.identifier.citationChernov, S., Cochez, M., & Ristaniemi, T. (2015). Anomaly Detection Algorithms for the Sleeping Cell Detection in LTE Networks. In <i>Proceedings of 2015 IEEE 81st Vehicular Technology Conference (VTC Spring)</i> (pp. 1-5). IEEE. IEEE Vehicular Technology Conference. <a href="https://doi.org/10.1109/VTCSpring.2015.7145707" target="_blank">https://doi.org/10.1109/VTCSpring.2015.7145707</a>
dc.identifier.otherCONVID_24495814
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/46535
dc.description.abstractThe Sleeping Cell problem is a particular type of cell degradation in Long-Term Evolution (LTE) networks. In practice such cell outage leads to the lack of network service and sometimes it can be revealed only after multiple user complains by an operator. In this study a cell becomes sleeping because of a Random Access Channel (RACH) failure, which may happen due to software or hardware problems. For the detection of malfunctioning cells, we introduce a data mining based framework. In its core is the analysis of event sequences reported by a User Equipment (UE) to a serving Base Station (BS). The crucial element of the developed framework is an anomaly detection algorithm. We compare performances of distance, centroid distance and probabilistic based methods, using Receiver Operating Characteristic (ROC) and Precision-Recall curves. Moreover, the theoretical comparison of the methods’ computational efficiencies is provided. The sleeping cell detection framework is verified by means of a dynamic LTE system simulator, using Minimization of Drive Testing (MDT) functionality. It is shown that the sleeping cell can be pinpointed.fi
dc.language.isoeng
dc.publisherIEEE
dc.relation.ispartofProceedings of 2015 IEEE 81st Vehicular Technology Conference (VTC Spring)
dc.relation.ispartofseriesIEEE Vehicular Technology Conference
dc.rightsIn Copyright
dc.subject.othermobile cellular networks
dc.subject.otherLTE
dc.subject.otherself-organizing networks
dc.subject.otherSON
dc.subject.othercell outage
dc.subject.otheranomaly detection
dc.titleAnomaly Detection Algorithms for the Sleeping Cell Detection in LTE Networks
dc.typeconference paper
dc.identifier.urnURN:NBN:fi:jyu-201507082554
dc.contributor.laitosTietotekniikan laitosfi
dc.contributor.laitosDepartment of Mathematical Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.date.updated2015-07-08T12:15:02Z
dc.relation.isbn978-1-4799-8088-8
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1-5
dc.relation.issn1090-3038
dc.type.versionacceptedVersion
dc.rights.copyright© 2015 IEEE. This is an author's post-print version of an article whose final and definitive form has been published in the conference proceeding by IEEE.
dc.rights.accesslevelopenAccess
dc.type.publicationconferenceObject
dc.relation.conferenceIEEE vehicular technology conference
dc.subject.ysotiedonlouhinta
jyx.subject.urihttp://www.yso.fi/onto/yso/p5520
dc.rights.urlhttps://rightsstatements.org/page/InC/1.0/
dc.relation.doi10.1109/VTCSpring.2015.7145707
dc.type.okmA4


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright