Extension of Deflection Coefficient for Linear Fusion of Quantized Reports in Cooperative Sensing
Abdi Mahmoudaliloo, Y., & Ristaniemi, T. (2014). Extension of Deflection Coefficient for Linear Fusion of Quantized Reports in Cooperative Sensing. In Proceedings of IEEE PIMRC 2014 : IEEE 25th International Symposium on Personal, Indoor and Mobile Radio Communications (pp. 928-932). IEEE. IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications workshops. https://doi.org/10.1109/PIMRC.2014.7136299
Julkaistu sarjassa
IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications workshopsPäivämäärä
2014Tekijänoikeudet
© 2014 IEEE. This is an authors' post-print version of an article whose final and definitive form has been published in the conference proceeding by IEEE.
2015:12 | 2016:51 | 2017:86 | 2018:131 | 2019:74 | 2020:64 | 2021:74 | 2022:41 | 2023:53 | 2024:63 | 2025:6
Maximizing the so-called deflection coefficient is
commonly used as an effective approach to design cooperative
sensing schemes with low computational complexity. In this
paper, an extension to the deflection coefficient is proposed which
captures the effects of the quantization processes at the sensing
nodes, jointly with the impact of linear combining at the fusion
center. The proposed parameter is then used to formulate a
new mixed-integer nonlinear programming problem as a fast
suboptimal method to design a distributed detection scenario
where the nodes report their sensing outcomes to a fusion center
through nonideal digital links. Numerical evaluations show that
the performance of the proposed method is very close to the
optimal case.
Julkaisija
IEEEEmojulkaisun ISBN
978-1-4799-4912-0Konferenssi
IEEE International Symposium on Personal, Indoor and Mobile Radio CommunicationsKuuluu julkaisuun
Proceedings of IEEE PIMRC 2014 : IEEE 25th International Symposium on Personal, Indoor and Mobile Radio CommunicationsISSN Hae Julkaisufoorumista
2166-9570Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/24412161
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Joint local quantization and linear cooperation in spectrum sensing for cognitive radio networks
Abdi Mahmoudaliloo, Younes; Ristaniemi, Tapani (Institute of Electrical and Electronics Engineers, 2014)—In designing cognitive radio networks (CRNs), protecting the license holders from harmful interference while maintaining acceptable quality-of-service (QoS) levels for the secondary users is a challenge effectively ... -
Non-linear Effect of Preexisting Cranial Adjacent Disc Degeneration on Cumulative 12-year Revision Risk Following Lumbar Fusions
Toivonen, Leevi A.; Mäntymäki, Heikki; Benneker, Lorin M.; Kautiainen, Hannu; Häkkinen, Arja; Neva, Marko H. (Lippincott Williams & Wilkins, 2024)Study Design. Retrospective analysis of prospectively collected data Objective. To evaluate how preexisting adjacent segment degeneration status impacts revision risk for adjacent segment disease (ASD) after lumbar ... -
Efficient Bayesian generalized linear models with time-varying coefficients : The walker package in R
Helske, Jouni (Elsevier BV, 2022)The R package walker extends standard Bayesian general linear models to the case where the effects of the explanatory variables can vary in time. This allows, for example, to model the effects of interventions such as ... -
Optimization of Linearized Belief Propagation for Distributed Detection
Abdi, Younes; Ristaniemi, Tapani (IEEE, 2020)In this paper, we investigate distributed inference schemes, over binary-valued Markov random fields, which are realized by the belief propagation (BP) algorithm. We first show that a decision variable obtained by the BP ... -
The Max-Product Algorithm Viewed as Linear Data-Fusion : A Distributed Detection Scenario
Abdi, Younes; Ristaniemi, Tapani (Institute of Electrical and Electronics Engineers (IEEE), 2020)In this paper, we disclose the statistical behavior of the max-product algorithm configured to solve a maximum a posteriori (MAP) estimation problem in a network of distributed agents. Specifically, we first build a ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.