Show simple item record

dc.contributor.authorAbu-Jamous, Basel
dc.contributor.authorFa, Rui
dc.contributor.authorRoberts, David J.
dc.contributor.authorNandi, Asoke
dc.date.accessioned2015-07-21T11:50:59Z
dc.date.available2015-07-21T11:50:59Z
dc.date.issued2015
dc.identifier.citationAbu-Jamous, B., Fa, R., Roberts, D. J., & Nandi, A. (2015). UNCLES: Method for the identification of genes differentially consistently co-expressed in a specific subset of datasets. <i>BMC Bioinformatics</i>, <i>16</i>(4 June), Article 184. <a href="https://doi.org/10.1186/s12859-015-0614-0" target="_blank">https://doi.org/10.1186/s12859-015-0614-0</a>
dc.identifier.otherCONVID_24759333
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/46530
dc.description.abstractBackground: Collective analysis of the increasingly emerging gene expression datasets are required. The recently proposed binarisation of consensus partition matrices (Bi-CoPaM) method can combine clustering results from multiple datasets to identify the subsets of genes which are consistently co-expressed in all of the provided datasets in a tuneable manner. However, results validation and parameter setting are issues that complicate the design of such methods. Moreover, although it is a common practice to test methods by application to synthetic datasets, the mathematical models used to synthesise such datasets are usually based on approximations which may not always be sufficiently representative of real datasets. Results: Here, we propose an unsupervised method for the unification of clustering results from multiple datasets using external specifications (UNCLES). This method has the ability to identify the subsets of genes consistently co-expressed in a subset of datasets while being poorly co-expressed in another subset of datasets, and to identify the subsets of genes consistently co-expressed in all given datasets. We also propose the M-N scatter plots validation technique and adopt it to set the parameters of UNCLES, such as the number of clusters, automatically. Additionally, we propose an approach for the synthesis of gene expression datasets using real data profiles in a way which combines the ground-truth-knowledge of synthetic data and the realistic expression values of real data, and therefore overcomes the problem of faithfulness of synthetic expression data modelling. By application to those datasets, we validate UNCLES while comparing it with other conventional clustering methods, and of particular relevance, biclustering methods. We further validate UNCLES by application to a set of 14 real genome-wide yeast datasets as it produces focused clusters that conform well to known biological facts. Furthermore, in-silico-based hypotheses regarding the function of a few previously unknown genes in those focused clusters are drawn. Conclusions: The UNCLES method, the M-N scatter plots technique, and the expression data synthesis approach will have wide application for the comprehensive analysis of genomic and other sources of multiple complex biological datasets. Moreover, the derived in-silico-based biological hypotheses represent subjects for future functional studies.fi
dc.language.isoeng
dc.publisherBioMed Central Ltd.
dc.relation.ispartofseriesBMC Bioinformatics
dc.subject.othergenome-wide analysis
dc.subject.otherconsistent co-expression
dc.subject.otherBi-CoPaM
dc.subject.otherUNCLES
dc.subject.othermultiple datasets analysis
dc.titleUNCLES: Method for the identification of genes differentially consistently co-expressed in a specific subset of datasets
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201507062534
dc.contributor.laitosTietotekniikan laitosfi
dc.contributor.laitosDepartment of Mathematical Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2015-07-06T17:23:24Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1471-2105
dc.relation.numberinseries4 June
dc.relation.volume16
dc.type.versionpublishedVersion
dc.rights.copyright© 2015 Abu-Jamous et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.rights.urlhttp://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1186/s12859-015-0614-0
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2015 Abu-Jamous et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License.
Except where otherwise noted, this item's license is described as © 2015 Abu-Jamous et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License.