Näytä suppeat kuvailutiedot

dc.contributor.authorBanichuk, Nikolay
dc.contributor.authorBarsuk, Alexander
dc.contributor.authorNeittaanmäki, Pekka
dc.contributor.authorJeronen, Juha
dc.contributor.authorTuovinen, Tero
dc.date.accessioned2014-12-17T10:15:31Z
dc.date.available2014-12-17T10:15:31Z
dc.date.issued2014
dc.identifier.isbn978-951-39-6017-9
dc.identifier.otheroai:jykdok.linneanet.fi:1453769
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/44933
dc.description.abstractIn this paper a new approach to the analysis of implicitly given function- als is developed in the frame of elastic stability theory. The approach gives an effective procedure to analyse stability behaviour, and to determine the bifur- cation points. Examples of application of the proposed approach for analysis of stability are presented, more precisely we consider the stability problem of an axially moving elastic panel, with no external applied tension, performing transverse vibrations. The analysis is applicable for many practical cases, for example, paper making and band saw blades.fi
dc.format.extentVerkkoaineisto (14 s.)
dc.language.isoeng
dc.publisherJyväskylän yliopisto
dc.relation.ispartofseriesReports of the Department of Mathematical Information Technology / University of Jyväskylä. Series B, Scientific computing
dc.subject.otherbifurkaatio
dc.subject.otherbifurcation
dc.subject.otherstability analysis
dc.subject.otherfibration
dc.subject.otheraxially moving materials
dc.titleBifurcation method of stability analysis and some applications
dc.typebook
dc.identifier.urnURN:ISBN:978-951-39-6017-9
dc.type.dcmitypeTexten
dc.relation.issn1456-436X
dc.relation.numberinseries7/2014
dc.rights.accesslevelopenAccess
dc.subject.ysolujuusoppi
dc.subject.ysodynamiikka
dc.subject.ysovakavuus
dc.subject.ysokimmoisuus
dc.subject.ysomatemaattiset mallit


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot