Isospin-invariant Skyrme energy-density-functional approach with axial symmetry
Sheikh, J. A., Hinohara, N., Dobaczewski, J., Nakatsukasa, T., Nazarewicz, W., & Sato, K. (2014). Isospin-invariant Skyrme energy-density-functional approach with axial symmetry. Physical Review C, 89(5), Article 054317. https://doi.org/10.1103/PhysRevC.89.054317
Julkaistu sarjassa
Physical Review CTekijät
Päivämäärä
2014Tekijänoikeudet
© 2014 American Physical Society. Further distribution has been made available under the terms of the Creative Commons Attribution License 3.0 (CC-BY).
Abstract. Background: Density functional theory (DFT) is the microscopic tool of choice to describe properties of nuclei over the entire nuclear landscape, with a focus on medium-mass and heavy complex systems. Modern energy density functionals (EDFs) often offer a level of accuracy typical of phenomenological approaches based on parameters locally fitted to the data. It is clear, however, that in order to achieve high quality of predictions to guide spectroscopic studies, current functionals must be improved, especially in the isospin channel. In this respect, experimental studies of short-lived nuclei far from stability offer a unique test of isospin aspects of the many-body theory.
Purpose: We develop the isospin-invariant Skyrme-EDF method by considering local densities in all possible isospin channels and proton-neutron (p-n) mixing terms as mandated by the isospin symmetry. The EDF employed has the most general form that depends quadratically on the isoscalar and isovector densities. We test and benchmark the resulting p-n EDF approach, and study the general properties of the new scheme by means of the cranking in the isospin space.
Methods: We extend the existing axial DFT solver hfbtho to the case of isospin-invariant EDF approach with all possible p-n mixing terms. Explicit expressions have been derived for all the densities and potentials that appear in the isospin representation. In practical tests, we consider the Skyrme EDF SkM∗ and, as a first application, concentrate on Hartree-Fock aspects of the problem, i.e., pairing has been disregarded.
Results: Calculations have been performed for the (A=78,T≃11), (A=40,T≃8), and (A=48,T≃4) isobaric analog chains. Isospin structure of self-consistent p-n mixed solutions has been investigated with and without the Coulomb interaction, which is the sole source of isospin symmetry breaking in our approach. The extended axial hfbtho solver has been benchmarked against the symmetry-unrestricted hfodd code for deformed and spherical states.
Conclusions: We developed and tested a general isospin-invariant Skyrme-EDF framework. The new approach permits spin-isospin densities that may give rise to hitherto unexplored modes in the excitation spectrum. The new formalism has been tested in the Hartree-Fock limit. A systematic comparison between hfodd and hfbtho results show a maximum deviation of about 10 keV on the total binding energy for deformed nuclei when the Coulomb term is included. Without this term, the results of both solvers agree down to a ∼10 eV level.
...
Julkaisija
American Physical SocietyISSN Hae Julkaisufoorumista
0556-2813
Alkuperäislähde
http://journals.aps.org/prc/abstract/10.1103/PhysRevC.89.054317Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/23831629
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Ellei muuten mainita, aineiston lisenssi on © 2014 American Physical Society. Further distribution has been made available under the terms of the Creative Commons Attribution License 3.0 (CC-BY).
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Strong-interaction Isospin-symmetry Breaking Within the Density Functional Theory
Baczyk, Pawel; Dobaczewski, Jacek; Konieczka, Maciej; Satula, Wojciech (Jagiellonian University, 2015)The conventional Skyrme interaction is generalized by adding zerorange charge-symmetry-breaking and charge-independence-breaking terms, and the corresponding energy density functional is derived. It is shown that the ... -
Polarization corrections to single-particle energies studied within the energy-density-functional and quasiparticle random-phase approximation approaches
Tarpanov, D.; Toivanen, Jussi; Dobaczewski, Jacek; Carlsson, B. G. (American Physical Society, 2014)Background: Models based on using perturbative polarization corrections and mean-field blocking approxima- tion give conflicting results for masses of odd nuclei. Purpose: We systematically investigate the polarization ... -
Impact of the surface energy coefficient on the deformation properties of atomic nuclei as predicted by Skyrme energy density functionals
Ryssens, W.; Bender, M.; Bennaceur, Karim; Heenen, P.-H.; Meyer, J. (American Physical Society, 2019)Background: In the framework of nuclear energy density functional (EDF) methods, many nuclear phenomena are related to the deformation of intrinsic states. Their accurate modeling relies on the correct description of the ... -
Approximate energy functionals for one-body reduced density matrix functional theory from many-body perturbation theory
Giesbertz, Klaas J. H.; Uimonen, Anna-Maija; van Leeuwen, Robert (Springer, 2018)We develop a systematic approach to construct energy functionals of the one-particle reduced density matrix (1RDM) for equilibrium systems at finite temperature. The starting point of our formulation is the grand potential ... -
Spectroscopic Properties of Nuclear Skyrme Energy Density Functionals
Tarpanov, D.; Dobaczewski, Jacek; Toivanen, Jussi; Carlsson, B. G. (American Physical Society, 2014)We address the question of how to improve the agreement between theoretical nuclear single-particle energies (SPEs) and observations. Empirically, in doubly magic nuclei, the SPEs can be deduced from spectroscopic properties ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.