Näytä suppeat kuvailutiedot

dc.contributor.authorRäsänen, Aleksi
dc.contributor.authorKuitunen, Markku
dc.contributor.authorTomppo, Erkki
dc.contributor.authorLensu, Anssi
dc.date.accessioned2014-07-16T06:30:38Z
dc.date.available2014-07-16T06:30:38Z
dc.date.issued2014
dc.identifier.citationRäsänen, A., Kuitunen, M., Tomppo, E., & Lensu, A. (2014). Coupling high-resolution satellite imagery with ALS-based canopy height model and digital elevation model in object-based boreal forest habitat type classification. <i>ISPRS Journal of Photogrammetry and Remote Sensing</i>, <i>94</i>(August 2014), 169-182. <a href="https://doi.org/10.1016/j.isprsjprs.2014.05.003" target="_blank">https://doi.org/10.1016/j.isprsjprs.2014.05.003</a>
dc.identifier.otherCONVID_23642902
dc.identifier.otherTUTKAID_61653
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/43899
dc.description.abstractWe developed a classification workflow for boreal forest habitat type mapping. In object-based image analysis framework, Fractal Net Evolution Approach segmentation was combined with random forest classification. High-resolution WorldView-2 imagery was coupled with ALS based canopy height model and digital terrain model. We calculated several features (e.g. spectral, textural and topographic) per image object from the used datasets. We tested different feature set alternatives; a classification accuracy of 78.0 % was obtained when all features were used. The highest classification accuracy (79.1 %) was obtained when the amount of features was reduced from the initial 328 to the 100 most important using Boruta feature selection algorithm and when ancillary soil and land-use GIS-datasets were used. Although Boruta could rank the importance of features, it could not separate unimportant features from the important ones. Classification accuracy was bit lower (78.7 %) when the classification was performed separately on two areas: the areas above and below 1 m vertical distance from the nearest stream. The data split, however, improved the classification accuracy of mire habitat types and streamside habitats, probably because their proportion in the below 1 m data was higher than in the other datasets. It was found that several types of data are needed to get the highest classification accuracy whereas omitting some feature groups reduced the classification accuracy. A major habitat type in the study area was mesic forests in different successional stages. It was found that the inner heterogeneity of different mesic forest age groups was large and other habitat types were often inside this heterogeneity.fi
dc.language.isoeng
dc.publisherElsevier BV
dc.relation.ispartofseriesISPRS Journal of Photogrammetry and Remote Sensing
dc.relation.urihttp://www.sciencedirect.com/science/article/pii/S092427161400121X
dc.subject.otherboreaaliset metsät
dc.subject.otherboreal forest
dc.subject.otherforest classifier
dc.titleCoupling high-resolution satellite imagery with ALS-based canopy height model and digital elevation model in object-based boreal forest habitat type classification
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201407032207
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.contributor.oppiaineYmpäristötiedefi
dc.contributor.oppiaineEnvironmental Scienceen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2014-07-03T03:30:13Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange169–182
dc.relation.issn0924-2716
dc.relation.numberinseriesAugust 2014
dc.relation.volume94
dc.type.versionacceptedVersion
dc.rights.accesslevelopenAccessfi
dc.subject.ysometsätyypit
dc.subject.ysobiologia
jyx.subject.urihttp://www.yso.fi/onto/yso/p9954
jyx.subject.urihttp://www.yso.fi/onto/yso/p1782
dc.relation.doi10.1016/j.isprsjprs.2014.05.003
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot