Discovering knowledge in various applications with a novel hyperspectral imager
Julkaisija
University of JyväskyläISBN
978-951-39-5538-0ISSN Hae Julkaisufoorumista
1456-5390Julkaisuun sisältyy osajulkaisuja
- Article I: Ilkka Pölönen, Heikki Salo, Heikki Saari, Jere Kaivosoja, Liisa Pesonen and Eija Honkavaara. Hyperspectral imaging based biomass and nitrogen content estimations from light-weight UAV. Proceedings of SPIE Vol. 8887, Remote Sensing for Agriculture, Ecosystems, and Hydrology XV, 88870J (October 16, 2013). DOI: doi:10.1117/12.2028624
- Article I: Ilkka Pölönen, Heikki Salo, Heikki Saari, Jere Kaivosoja, Liisa Pesonen and Eija Honkavaara. Hyperspectral imaging based biomass and nitrogen content estimations from light-weight UAV. Proceedings of SPIE Vol. 8887, Remote Sensing for Agriculture, Ecosystems, and Hydrology XV, 88870J (October 16, 2013). DOI: doi:10.1117/12.2028624 Please see
- Article III: Eija Honkavaara, Heikki Saari, Jere Kaivosoja, Ilkka Pölönen, Teemu Hakala, Paula Litkey, Jussi Mäkynen and Liisa Pesonen. Processing and assesment of spectrometric, stereoscopic, imagery collected by a light weight UAV spectral camera for precision agriculture. Remote Sensing, Vol. 5, No. 10, p. 5006-5039, doi:10.3390/rs5105006, (2013). Please see
- Article IV: Noora Neittaanmäki-Perttu, Mari Grönroos, Taneli Tani, Ilkka Pölönen, Annamari Ranki, Olli Saksela and Erna Snellman. Detecting field cancerization using hyperspectral imaging system. Lasers in Surgery and Medicine, Vol. 45, No 7, p. 410-417, doi:10.1002/lsm.22160, (2013). DOI: 10.1002/lsm.22160
- Article V: Jaana Kuula, Ilkka Pölönen, Hannu-Heikki Puupponen, Tuomas Selander, Tapani Reinikainen, Tapani Kalenius and Heikki Saari. Using VIS/NIR and IR spectral cameras for detecting and separating crime scene details. Proceedings of SPIE Vol. 8359, Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense XI, 83590P (May 1, 2012); doi:10.1117/12.918555;, (2012). DOI: 10.1117/12.918555
- Article VI: Paavo Nieminen, Ilkka Pölönen and Tuomo Sipola. Research Literature mapping using diffusion maps. Journal of Informetrics, Vol. 7, No. 4, P. 874- 886, doi:10.1016/j.joi.2013.08.004., (2013) DOI: 10.1016/j.joi.2013.08.004 .
Asiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Väitöskirjat [3589]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Miniature MOEMS hyperspectral imager with versatile analysis tools
Trops, Roberts; Hakola, Anna-Maria; Jääskeläinen, Severi; Näsilä, Antti; Annala, Leevi; Eskelinen, Matti; Saari, Heikki; Pölönen, Ilkka; Rissanen, Anna (SPIE, The International Society for Optical Engineering, 2019)The Fabry-Perot interferometers (FPI) are essential components of many hyperspectral imagers (HSI). While the Piezo-FPI (PFPI) are still very relevant in low volume, high performance applications, the tunable MOEMS FPI ... -
Unmixing methods in novel applications of spectral imaging
Puupponen, Hannu-Heikki (University of Jyväskylä, 2014) -
Hyperspectral imaging of asteroids using an FPI-based sensor
Lind, Leevi; Laamanen, Hannu; Pölönen, Ilkka (SPIE, 2021)The compositions of asteroids are of interest for the planetary sciences, mining, and planetary defense. The main method for evaluating these compositions is reflectance spectroscopy. Spectroscopic measurements performed ... -
FPI Based Hyperspectral Imager for the Complex Surfaces : Calibration, Illumination and Applications
Raita-Hakola, Anna-Maria; Annala, Leevi; Lindholm, Vivian; Trops, Roberts; Näsilä, Antti; Saari, Heikki; Ranki, Annamari; Pölönen, Ilkka (MDPI AG, 2022)Hyperspectral imaging (HSI) applications for biomedical imaging and dermatological applications have been recently under research interest. Medical HSI applications are non-invasive methods with high spatial and spectral ... -
Generating Hyperspectral Skin Cancer Imagery using Generative Adversarial Neural Network
Annala, Leevi; Neittaanmäki, Noora; Paoli, John; Zaar, Oscar; Pölönen, Ilkka (IEEE, 2020)In this study we develop a proof of concept of using generative adversarial neural networks in hyperspectral skin cancer imagery production. Generative adversarial neural network is a neural network, where two neural ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.