Can the adaptive Metropolis algorithm collapse without the covariance lower bound?
Vihola, M. (2011). Can the adaptive Metropolis algorithm collapse without the covariance lower bound?. Electronic Journal of Probability, 16, 45-75. DOI:10.1214/EJP.v16-840.
Published in
Electronic Journal of ProbabilityAuthors
Date
2011Copyright
© Vihola, 2011.
The Adaptive Metropolis (AM) algorithm is based on the symmetric random-walk Metropolis algorithm. The proposal distribution has the following time-dependent covariance matrix at step $n+1$ \[
S_n = Cov(X_1,...,X_n) + \epsilon I, \] that is, the sample covariance matrix of the history of the chain plus a (small) constant $\epsilon>0$ multiple of the identity matrix $I$. The lower bound on the eigenvalues of $S_n$ induced by the factor $\epsilon I$ is theoretically convenient, but practically cumbersome, as a good value for the parameter $\epsilon$ may not always be easy to choose. This article considers variants of the AM algorithm that do not explicitly bound the eigenvalues of $S_n$ away from zero. The behaviour of $S_n$ is studied in detail, indicating that the eigenvalues of $S_n$ do not tend to collapse to zero in general.
Publisher
Institute of Mathematical StatisticsISSN Search the Publication Forum
1083-6489Keywords
Original source
http://ejp.ejpecp.org/Metadata
Show full item recordCollections
License
Related items
Showing items with similar title or keywords.
-
On a posteriori error bounds for approximations of the generalized Stokes problem generated by the Uzawa algorithm
Anjam, Immanuel; Nokka, Marjaana; Repin, Sergey (De Gruyter, 2012)In this paper, we derive computable a posteriori error bounds for approximations computed by the Uzawa algorithm for the generalized Stokes problem. We show that for each Uzawa iteration both the velocity error and the ... -
On the use of approximate Bayesian computation Markov chain Monte Carlo with inflated tolerance and post-correction
Vihola, Matti; Franks, Jordan (Oxford University Press, 2020)Approximate Bayesian computation enables inference for complicated probabilistic models with intractable likelihoods using model simulations. The Markov chain Monte Carlo implementation of approximate Bayesian computation ... -
Using uncertain preferential information from stakeholders to assess the acceptability of alternative forest management plans
Eyvindson, Kyle; Öhman, Karin; Nordström, Eva‐Maria (John Wiley & Sons Ltd., 2018)In forest management planning, participatory planning processes are often encouraged as a means to acquire relevant information and to enhance the stakeholders' acceptability of alternative plans. This requires the aggregation ... -
Valkosolupitoisuuksien bayesilainen mallintaminen lasten leukemian ylläpitohoidossa
Karppinen, Santeri (2018)Lasten akuutin lymfoblastileukemian ylläpitovaiheen hoidossa tehtävät lääkeannostuspäätökset pohjataan nykyisin potilaan veren valkosolupitoisuuteen, joka on hoidon tehokkuudesta kertova tekijä. Potilaalle sopiva lääkeannostus ... -
On Malliavin calculus and approximation of stochastic integrals for Lévy processes
Laukkarinen, Eija (University of Jyväskylä, 2012)