Multi-objective actuator placement optimization for local sound control evaluated in a stochastic domain
Airaksinen, T. & Aittokoski, T. (2013). Multi-Objective Actuator Placement Optimization for Local Sound Control Evaluated in a Stochastic Domain. In: Repin, S., Tiihonen, T., Tuovinen, T. (eds.), Numerical Methods for Differential Equations, Optimization, and Technological Problems. Dedicated to Professor P. Neittaanmäki on His 60th Birthday. Computational Methods in Applied Sciences, 2013, Volume 27, Part 4, 321-334, DOI 10.1007/978-94-007-5288-7_17
Julkaistu sarjassa
Computational Methods in Applied SciencesPäivämäärä
2013Tekijänoikeudet
© Springer Science+Business Media Dordrecth 2013. This is an autor's final draft version of an article whose final and definitive form has been published by Springer.
A method to find optimal locations and properties of anti-noise actuators in a local noise control system is considered. The local noise control performance is approximated by an approach based on a finite element method, attempting to estimate the average performance of an optimal active noise control (ANC) system. Local noise control uses a fixed number of circular actuators that are located on the boundary of a three-dimensional enclosed acoustic space. Actuator signals are used to minimize the known harmonic noise at specified locations. The average noise reduction is maximized at two frequency ranges by adjusting the anti-noise actuator configuration, which is a non-linear multi-objective optimization problem. To solve the optimization problem, an unsorted population size evolutionary optimization algorithm (UPS-EMOA) is considered, and its performance is compared to the widely-known NSGA-II method. As a numerical example problem, the ANC in a passenger car cabin is considered. Significantly better noise control is obtained with the optimized actuator locations than only by a engineer’s sophisticated guess.
...
Julkaisija
SpringerKuuluu julkaisuun
Numerical Methods for Differential Equations, Optimization, and Technological Problems/Sergey, R., Tiihonen, T., Tuovinen, T. (eds.) ISBN 978-94-007-5287-0ISSN Hae Julkaisufoorumista
1871-3033Asiasanat
Alkuperäislähde
http://www.springer.com/materials/mechanics/book/978-94-007-5287-0Metadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Multi-objective actuator placement optimization for local sound control evaluated in a stochastic domain
Airaksinen, Tuomas; Aittokoski, Timo (Jyväskylän yliopisto, 2011)A method to find optimal locations and properties of anti-noise actuators in local noise control system is considered. The local noise control performance is approximated by a finite element method based approach, that ... -
Numerical methods for acoustics and noise control
Airaksinen, Tuomas (University of Jyväskylä, 2010)This dissertation considers numerical methods for wave propagation modelling and noise control. The first part of the dissertation discusses an efficient method for solving time-harmonic wave equations in acoustic (the ... -
An optimal local active noise control method based on stochastic finite element models
Airaksinen, Tuomas; Toivanen, Jari (Elsevier, 2013)A new method is presented to obtain a local active noise control that is optimal in stochastic environment. The method uses numerical acoustical modeling that is performed in the frequency domain by using a sequence of ... -
Lyapunov quantities and limit cycles in two-dimensional dynamical systems : analytical methods, symbolic computation and visualization
Kuznetsova, Olga (University of Jyväskylä, 2011) -
Local control of sound in stochastic domains based on finite element models
Airaksinen, Tuomas; Heikkola, Erkki; Toivanen, Jari (World Scientific Publishing, 2011)A numerical method for optimizing the local control of sound in a stochastic domain is developed. A three-dimensional enclosed acoustic space, for example, a cabin with acoustic actuators in given locations is modeled ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.