Poikkeavuuksien havaitseminen WWW-palvelinlokidatasta
Nykyajan web-palvelut ovat dynaamisia ja avoimia. Tämä antaa suurelle joukolle käyttäjiä mahdollisuuden päästä käsiksi palveluun ja sen sisältämään tietoon. Samalla avautuu uusia mahdollisuuksia toteuttaa hyökkäys. Tietoturvan pitäminen riittävällä tasolla on kilpailua aikaa vastaan. Poikkeavuuksien havaitsemisjärjestelmillä pystytään kuitenkin havaitsemaan ennestään tuntemattomat hyökkäykset ja muu epänormaali toiminta ja siten pitämään tietoturva hyvällä tasolla. Tutkimuksessa sovellettiin n-grammianalyysia, tukivektorikonetta ja diffuusiokarttoja esikäsitellyn verkkodatan analysointiin. Kaikilla menetelmillä saatiin lupaavia tuloksia, mutta reaaliaikainen järjestelmä vaatii vielä jatkokehitystä.
Asiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Pro gradu -tutkielmat [29750]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
A method for anomaly detection in hyperspectral images, using deep convolutional autoencoders
Penttilä, Jeremias (2017)Menetelmä poikkeavuuksien havaitsemiseen hyperspektrikuvista käyttäen syviä konvolutiivisia autoenkoodereita. Poikkeavuuksien havaitseminen kuvista, erityisesti hyperspektraalisista kuvista, on hankalaa. Kun ongelmaan ... -
On Attacking Future 5G Networks with Adversarial Examples : Survey
Zolotukhin, Mikhail; Zhang, Di; Hämäläinen, Timo; Miraghaei, Parsa (MDPI AG, 2023)The introduction of 5G technology along with the exponential growth in connected devices is expected to cause a challenge for the efficient and reliable network resource allocation. Network providers are now required to ... -
Combining conjunctive rule extraction with diffusion maps for network intrusion detection
Juvonen, Antti; Sipola, Tuomo (IEEE, 2013)Network security and intrusion detection are important in the modern world where communication happens via information networks. Traditional signature-based intrusion detection methods cannot find previously unknown ... -
Dimensionality reduction framework for detecting anomalies from network logs
Sipola, Tuomo; Juvonen, Antti; Lehtonen, Joel (CRL Publishing, 2012)Dynamic web services are vulnerable to multitude of intrusions that could be previously unknown. Server logs contain vast amounts of information about network traffic, and finding attacks from these logs improves the ... -
Anomaly detection from network logs using diffusion maps
Sipola, Tuomo; Juvonen, Antti; Lehtonen, Joel (Springer, 2011)The goal of this study is to detect anomalous queries from network logs using a dimensionality reduction framework. The fequencies of 2-grams in queries are extracted to a feature matrix. Dimensionality reduction is done ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.