Changes in gene expression linked with adult reproductive diapause in a northern malt fly species: a candidate gene microarray study
Lataukset:
Kankare, M., Salminen, T., Laiho, A., Vesala, L., & Hoikkala, A. (2010). Changes in gene expression linked with adult reproductive diapause in a northern malt fly species: a candidate gene microarray study. BMC Ecology, 2010 (10), 3-9. Retrieved from http://www.biomedcentral.com/1472-6785/10/3
Julkaistu sarjassa
BMC EcologyPäivämäärä
2010Tekijänoikeudet
© 2010 Kankare et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Background:
Insect diapause is an important biological process which involves many life-history parameters important for survival and reproductive fitness at both individual and population level. Drosophila montana, a species of D. virilis group, has a profound photoperiodic reproductive diapause that enables the adult flies to survive through the harsh winter conditions of high latitudes and altitudes. We created a custom-made microarray for D. montana with 101 genes known to affect traits important in diapause, photoperiodism, reproductive behaviour, circadian clock and stress tolerance in model Drosophila species. This array gave us a chance to filter out genes showing expression changes during photoperiodic reproductive diapause in a species adapted to live in northern latitudes with high seasonal changes in environmental conditions.
Results:
Comparisons among diapausing, reproducing and young D. montana females revealed expression changes in 24 genes on microarray; for example in comparison between diapausing and reproducing females one gene (Drosophila cold acclimation gene, Dca) showed up-regulation and 15 genes showed down-regulation in diapausing females. Down-regulation of seven of these genes was specific to diapause state while in five genes the expression changes were linked with the age of the females rather than with their reproductive status. Also, qRT-PCR experiments confirmed couch potato (cpo) gene to be involved in diapause of D. montana.
Conclusions:
A candidate gene microarray proved to offer a practical and cost-effective way to trace genes that are likely to play an important role in photoperiodic reproductive diapause and further in adaptation to seasonally varying environmental conditions. The present study revealed two genes, Dca and cpo, whose role in photoperiodic diapause in D. montana is worth of studying in more details. Also, further studies using the candidate gene microarray with more specific experimental designs and target tissues may reveal additional genes with more restricted expression patterns.
...
Julkaisija
BioMed Central (BMC)ISSN Hae Julkaisufoorumista
1472-6785
Alkuperäislähde
http://www.biomedcentral.com/1472-6785/10/3Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Ellei muuten mainita, aineiston lisenssi on © 2010 Kankare et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
De novo RNA sequencing enables transcriptome studies in non-model species : gene expression patterns involved in Drosophila montana reproductive diapause
Merisalo, Mikko (2014)Monet pohjoiset hyönteiset selviävät talvesta lisääntymislepokaudessa, joka on geneettisesti määräytyvä ja hormonaalisesti ohjattu fysiologinen lepotila. Lisääntymislepokautta on pääosin tutkittu ekologisesta ja fysiologisesta ... -
Selection for reproduction under short photoperiods changes diapause-associated traits and induces widespread genomic divergence
Kauranen, Hannele; Kinnunen, Johanna; Hiillos, Anna-Lotta; Lankinen, Pekka; Hopkins, David; Wiberg, R. Axel W; Ritchie, Michael G.; Hoikkala, Anneli (Company of Biologists, 2019)The incidence of reproductive diapause is a critical aspect of life history in overwintering insects from temperate regions. Much has been learned about the timing, physiology and genetics of diapause in a range of insects, ... -
Plasticity in Photoperiodism : Drosophila montana Females Have a Life-Long Ability to Switch From Reproduction to Diapause
Lankinen, Pekka; Kastally, Chedly; Hoikkala, Anneli (SAGE Publications, 2022)Photoperiodic reproductive diapause is an essential part of female life cycle in several insect species living on high latitudes, where overwintering in reproductive stage involves high risks for survival and progeny ... -
Clinal variation in the temperature and photoperiodic control of reproductive diapause in Drosophila montana females
Lankinen, Pekka; Kastally, Chedly; Hoikkala, Anneli (Elsevier, 2023)Insect adaptation to climatic conditions at different latitudes has required changes in life-history traits linked with survival and reproduction. Several species, including Drosophila montana, show robust latitudinal ... -
Gene expression in TGFbeta-induced epithelial cell differentiation in a three-dimensional intestinal epithelial cell differentiation model
Juuti-Uusitalo, Kati M; Kaukinen, Katri; Mäki, Markku; Tuimala, Jarno; Kainulainen, Heikki (BioMed Central (BMC), 2006)Background. The TGFβ1-induced signal transduction processes involved in growth and differentiation are only partly known. The three-dimensional epithelial differentiation model, in which T84 epithelial cells are induced ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.