University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Opinnäytteet
  • Pro gradu -tutkielmat
  • View Item
JYX > Opinnäytteet > Pro gradu -tutkielmat > View Item

Tilastollisia luokittelumenetelmiä koneelliseen tunnistamiseen : sovellus pohjaeläinaineistoon

Thumbnail
View/Open
850.5Kb

Downloads:  
Show download detailsHide download details  
Authors
Ärje, Johanna
Date
2010
Discipline
TilastotiedeStatistics

 
Pohjaeläimiä käytetään biologisessa seurannassa, jolla tutkitaan ihmistoiminnan vaikutuksia vesistöjen ympäristön tilaan. Perinteisesti pohjaeläimet tunnistetaan manuaalisesti. Tässä työssä tarkastellaan, miten pohjaeläimiä tunnistetaan koneellisesti käyttäen luokittelumenetelmiä, jotka ovat tuottaneet hyviä tuloksia planktoneilla. Pohjaeläinten tapauksessa on tärkeää saavuttaa mahdollisimman tarkat estimaatit lajien suhteellisille osuuksille. Tätä varten tarkastellaan sekaannusmatriisikorjauksena tunnettua menetelmää lajiosuuksien estimaateille. Pohjaeläimet ovat vesistöjen pohjassa eläviä selkärangattomia eläimiä, jotka reagoivat nopeasti ympäristön muutoksiin. Niiden runsaussuhteiden muutokset kertovat ympäristön tilan muutoksista. Biologinen seuranta on biologisten laatutekijöiden, kuten pohjaeläinten, havainnointia. Biologisessa seurannassa pohjaeläinten havaituista lukumääristä lasketaan useita indeksejä, joita käytetään vesistöjen vertailussa. Koneellisessa tunnistamisessa tutkittavat kohteet kuvataan tietokoneelle, ja kuvasta segmentoidaan, eli erotellaan, jokainen hahmo muista yksilöistä ja taustasta. Yksilökuvista määritetään yksilön ominaisuuksia kuvaavia piirteitä, joiden avulla hahmot luokitellaan. Tässä työssä keskitytään luokittelumenetelmiin. Aineistoon sovellettavat luokittelumenetelmät ovat Bayes-luokittelija, päätöspuu ja satunnainen metsä. Lisäksi tarkastellaan vähemmän käytettyä satunnaisen metsän sovellusta Bayes-luokittelijaan. Tämän odotetaan parantavan perinteisen Bayes-luokittelijan robustisuutta ja tarkkuutta. Luokkakohtaiset luokitteluvirheet aiheuttavat harhaa luokittelun tuloksena saataviin lajiosuuksien estimaatteihin. Tämän vuoksi työssä sovelletaan sekaannusmatriisikorjauksena tunnettua menetelmää näiden estimaattien korjaamiseksi. Tutkielmassa kaikilla luokittelumenetelmillä saavutetaan erittäin hyviä tuloksia. Bayes-luokittelijan luokitteluvirhe on pienin ja sillä saavutettuja tuloksia esitellään myös käsikirjoituksessa [10]. Erityisesti lajiosuuksien korjaus tuottaa kiinnostavia tuloksia. Bayes-luokittelija toimii jo itsessään hyvin, mutta kaikilla muilla luokittelijoilla sekaannusmatriisikorjauksella saadaan luokittelun tuloksia paremmat estimaatit lajien suhteellisille osuuksille. Etenkin satunnaisen Bayes-metsän korjatuilla estimaateilla saavutetaan kilpailukykyisiä tuloksia Bayes-luokittelijan luokittelun tuloksena saatujen lajiosuuksien estimaattien kanssa. ...
Keywords
Bayes luokittelija bayesilainen menetelmä pohjaeläimistö tunnistaminen luokitus
URI

http://urn.fi/URN:NBN:fi:jyu-201006102027

Metadata
Show full item record
Collections
  • Pro gradu -tutkielmat [23396]

Related items

Showing items with similar title or keywords.

  • Improving statistical classification methods and ecological status assessment for river macroinvertebrates 

    Ärje, Johanna (University of Jyväskylä, 2016)
    Aquatic ecosystems are facing a growing number of human-induced stressors and the need to implement more biomonitoring to assess the ecological status of water bodies is eminent. This dissertation aims at providing tools ...
  • Virtuaalisten yhteisöjen käytön vaikutus virtuaalisten identiteettien tunnistamiseen 

    Koivusaari, Juho (2009)
    Identiteetti, yhteisöt sekä asiantuntijuus nousevat esille uudelleen internetin palvelujen kehittymisen myötä. Yhteisöissä olevat käyttäjät ovat hyvin erilaisia kokemuksen ja taitojen puolesta. Yksi näistä taidoista on ...
  • Automatic image‐based identification and biomass estimation of invertebrates 

    Ärje, Johanna; Melvad, Claus; Jeppesen, Mads Rosenhøj; Madsen, Sigurd Agerskov; Raitoharju, Jenni; Rasmussen, Maria Strandgård; Iosifidis, Alexandros; Tirronen, Ville; Gabbouj, Moncef; Meissner, Kristian; Høye, Toke Thomas (Wiley, 2020)
    Understanding how biological communities respond to environmental changes is a key challenge in ecology and ecosystem management. The apparent decline of insect populations necessitates more biomonitoring but the time-consuming ...
  • Orthopedic manual therapy on low back pain with working adults : clinical tests, subclassification and clinical trial of low back pain 

    Paatelma, Markku (University of Jyväskylä, 2011)
  • The McKenzie method in assessing, classifying and treating non-specific low back pain in adults with special reference to the centralization phenomenon 

    Kilpikoski, Sinikka (University of Jyväskylä, 2010)
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement

Unless otherwise specified, publicly available JYX metadata (excluding abstracts) may be freely reused under the CC0 waiver.
Open Science Centre