Cluster priors in the Bayesian modelling of fMRI data
Julkaistu sarjassa
Report / University of Jyväskylä. Department of Mathematics and StatisticsTekijät
Päivämäärä
2001Oppiaine
TilastotiedeJulkaisija
University of JyväskyläISBN
951-39-1059-8ISSN Hae Julkaisufoorumista
1457-8905Asiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Väitöskirjat [3598]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Importance sampling type estimators based on approximate marginal Markov chain Monte Carlo
Vihola, Matti; Helske, Jouni; Franks, Jordan (Wiley-Blackwell, 2020)We consider importance sampling (IS) type weighted estimators based on Markov chain Monte Carlo (MCMC) targeting an approximate marginal of the target distribution. In the context of Bayesian latent variable models, the ... -
Conditional particle filters with diffuse initial distributions
Karppinen, Santeri; Vihola, Matti (Springer, 2021)Conditional particle filters (CPFs) are powerful smoothing algorithms for general nonlinear/non-Gaussian hidden Markov models. However, CPFs can be inefficient or difficult to apply with diffuse initial distributions, which ... -
Statistical analysis of life sequence data
Helske, Satu (University of Jyväskylä, 2016) -
Efficient Bayesian generalized linear models with time-varying coefficients : The walker package in R
Helske, Jouni (Elsevier BV, 2022)The R package walker extends standard Bayesian general linear models to the case where the effects of the explanatory variables can vary in time. This allows, for example, to model the effects of interventions such as ... -
On the use of approximate Bayesian computation Markov chain Monte Carlo with inflated tolerance and post-correction
Vihola, Matti; Franks, Jordan (Oxford University Press, 2020)Approximate Bayesian computation enables inference for complicated probabilistic models with intractable likelihoods using model simulations. The Markov chain Monte Carlo implementation of approximate Bayesian computation ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.