University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Opinnäytteet
  • Väitöskirjat
  • View Item
JYX > Opinnäytteet > Väitöskirjat > View Item

Simulations of the structure and rheology of wet webs

Thumbnail
View/Open
611.4 Kb

Downloads:  
Show download detailsHide download details  
Published in
Research report / Department of Physics, University of Jyväskylä
Authors
Miettinen, Pasi
Date
2009
Discipline
Fysiikka

 
In this Thesis we modified a recently introduced model for fiber suspensions to be applicable to wet fiber networks so as to analyze by computer simulations their structural and rheological properties. These properties were compared, under tensile loading in particular, to those of wet and dry paper. The model used operated at the fiber level, where the dynamics of fiber motion were determined by fiber stiffness and fiber-fiber interactions such as friction and adhesive forces. Water surface tension, inter-fiber contact area, and moisture content all contributed to the latter force. The tensile strength of wet fiber networks could be described in terms of a very simple function of adhesion-force magnitude, number of inter-fiber contacts, friction coefficient, and network grammage. Relaxation of the tensile force as simulated for model networks was found to compare well with experimental results for wet paper, and the force was found to decrease proportional to logarithmic time. Relaxation rate in the model networks and in wet paper was found to be higher than in dry paper for which previous results are available. In the simulations the permanent deformation that appeared after relaxation was, however, clearly higher than what was measured in wet paper. We suggest that this difference arises because, in the model networks, all the contact points between fibers were frictional, while in real wet paper there may also appear some chemical bonding between fibers. Results of analytical models and computer simulations for the number of fiber-fiber contacts in compressed and stretched fiber networks were compared. When the majority of fibers lay parallel to the xy plane, the analytical and numerical predictions for the number of contacts were in good agreement both for compressed and stretched networks. However, in flocculated and stretched networks the strain was mainly concentrated between flocs that remained largely intact during straining. The nonuniform strain in this case means that mean-field approach does not work for wet flocculated networks. Simulation of tri-axial deformation of model networks showed that the lateral network-contraction ratio (Poisson ratio) was nearly constant for very small strains as expected for a linear regime. There after it increased with increasing applied strain and sample length. For very large strains it leveled off to a constant value depending on the sample length. Simulations also captured the experimentally observed behavior for paper thickness during straining: The thickness of the network decreased or increased during stretching depending on fiber stiffness. ...
Publisher
University of Jyväskylä
ISBN
978-951-39-3750-8
ISSN Search the Publication Forum
0075-465X
Contains publications
  • Artikkeli I: Miettinen, P. P. J., Ketoja, J. A., and Klingenberg, D. J. (2007) Simulated Strength of Wet Fibre Networks,. Journal of Pulp and Paper Science, 33(4), 199-205.
  • Artikkeli II: Miettinen, P. P. J., Ketoja, J. A. and Hjelt, T. (2007). Simulated structure of wet fiber networks. Nordic Pulp & Paper Research Journal, 22(4), 516-522. DOI: https://doi.org/10.3183/npprj-2007-22-04-p516-522
  • Artikkeli III: Miettinen, P. P. J. and Ketoja, J. A. (2008). Simulation of triaxial deformation of wet fiber networks. Nordic Pulp and Paper Research Journal, 23(3), 264-271. DOI: 10.3183/npprj-2008-23-03-p264-271
  • Artikkeli IV: Miettinen, P. P. J., Kekko, P., Kouko, J. (2009) Relaxation of wet paper by simulations and laboratory-scale experiments. Nordi Pulp & Paper Research Journal, 24, 381-387. DOI: 10.3183/npprj-2009-24-04-p381-387
Keywords
suspensio virtausoppi kuidut paperiteollisuus
URI

http://urn.fi/URN:ISBN:978-951-39-3750-8

Metadata
Show full item record
Collections
  • Väitöskirjat [3176]

Related items

Showing items with similar title or keywords.

  • Lignin Inter-Diffusion Underlying Improved Mechanical Performance of Hot-Pressed Paper Webs 

    Mattsson, Amanda; Joelsson, Tove; Miettinen, Arttu; Ketoja, Jukka A.; Pettersson, Gunilla; Engstrand, Per (MDPI AG, 2021)
    Broader use of bio-based fibres in packaging becomes possible when the mechanical properties of fibre materials exceed those of conventional paperboard. Hot-pressing provides an efficient method to improve both the wet and ...
  • Numerical model for the shear rheology of two-dimensional wet foams with deformable bubbles 

    Kähärä, Topi; Tallinen, Tuomas; Timonen, Jussi (American Physical Society, 2014)
    Shearing of two-dimensional wet foam is simulated using an introduced numerical model, and results are compared to those of experiments. This model features realistically deformable bubbles, which distinguishes it from ...
  • A plasticity model for predicting the rheological behavior of paperboard 

    Leppänen, Teemu; Erkkilä, Anna-Leena; Kouko, Jarmo; Laine, Valtteri; Sorvari, Joonas (Pergamon, 2017)
    The sorption of water into the paperboard exposes a container to reversible and irreversible deformations under relative humidity variations. In this study, an elasto-plastic material model is used to demonstrate how ...
  • Rheological and Flocculation Analysis of Microfibrillated Cellulose Suspension Using Optical Coherence Tomography 

    Koponen, Antti I.; Lauri, Janne; Haavisto, Sanna; Fabritius, Tapio (MDPI AG, 2018)
    A sub-micron resolution optical coherence tomography device was used together with a pipe rheometer to analyze the rheology and flocculation dynamics of a 0.5% microfibrillated cellulose (MFC) suspension. The bulk behavior ...
  • An industry in transition : environmental significance of strategic reaction and proaction mechanisms of the Finnish pulp and paper industry 

    Karvonen, Minna-Maari (University of Jyväskylä, 2000)
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement

Unless otherwise specified, publicly available JYX metadata (excluding abstracts) may be freely reused under the CC0 waiver.
Open Science Centre