dc.contributor.author | Koppinen, Panu | |
dc.date.accessioned | 2009-11-27T13:33:06Z | |
dc.date.available | 2009-11-27T13:33:06Z | |
dc.date.issued | 2009 | |
dc.identifier.isbn | 978-951-39-3582-5 | |
dc.identifier.other | oai:jykdok.linneanet.fi:1115540 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/22468 | |
dc.description.abstract | This thesis concentrates on studies of AlOx based tunnel junctions and their feasibility
for cooling, thermometry and strain sensing in suspended nanostructures.
The main result of the thesis is cooling of one dimensional phonon modes of a suspended
nanowire with normal metal insulator superconductor (NIS) tunnel junctions.
Simultaneous cooling of both electrons and phonons was achieved, and the
lowest phonon temperature reached in the system was 42 mK with an initial temperature
of 100 mK. In addition, suspended devices show cooling still at a bath
temperature of 600 mK. The observed thermal transport characteristics show, that
the heat flow is limited by the scattering of phonons at the bulk nanowire interface.
The properties of Al AlOx Al tunnel junctions can be improved by thermal
annealing in vacuum at 350 450 C. Annealing treatment will lead to complete stabilization
of the junctions, and on increase in both tunneling resistance and charging
energy. In addition, the annealing process shows a marked improvement in the tunneling
conductance spectrum, indicated by a disappearance of several resonances,
which are a fingerprint of either resonant or inelastic tunneling processes caused
typically by impurities located in the tunneling barrier. The superconducting gap of
Al is not affected, but the supercurrent is reduced, consistent with the increase of
tunneling resistance.
Feasiblity of conventional, sub micron sized Al AlOx Al tunnel junctions in
sensing strain, and therefore displacement, is demonstrated in the final chapter of
this thesis. Tunnel junctions show a good response to applied strain (gauge factor),
which is competitive with existing strain and displacement detectors. | en |
dc.format.extent | vii, 76 sivua : kuvitettu | |
dc.language.iso | eng | |
dc.publisher | University of Jyväskylä | |
dc.relation.ispartofseries | Research report / Department of Physics, University of Jyväskylä | |
dc.relation.haspart | <b>Artikkeli I:</b> Koppinen, P., Väistö, L.M., & Maasilta, I. (2007). Compelete stabilization and improvement of the characteristics of tunnel junctions by thermal annealing. <i>Applied Physics Letters, 90, 053503.</i> DOI: <a href="https://doi.org/10.1063/1.2437662"target="_blank">10.1063/1.2437662</a> | |
dc.relation.haspart | <b>Artikkeli II:</b> Koppinen, P., Kühn, T., & Maasilta, I. (2009). Effects of charging energy on SINIS tunnel junction thermometry. <i>Journal of Low Temperature Physics, 154, 179–189</i> DOI: <a href="https://doi.org/10.1007/s10909-009-9861-7"target="_blank">10.1007/s10909-009-9861-7</a> | |
dc.relation.haspart | <b>Artikkeli III:</b> Koppinen, P., & Maasilta, I. (2009). Cooling of suspended nanostructures with tunnel junctions. <i> Journal of Physics: Conference Series, 150, 012025.</i> DOI: <a href="https://doi.org/10.1088/1742-6596/150/1/012025"target="_blank">10.1088/1742-6596/150/1/012025</a> | |
dc.relation.haspart | <b>Artikkeli IV:</b> Koppinen, P., & Maasilta, I. (2009). Phonon cooling of nanomechanical beams with tunnel junctions. <i>Physical Review Letters, 102, 165502.</i> DOI: <a href="https://doi.org/10.1103/PhysRevLett.102.165502"target="_blank">10.1103/PhysRevLett.102.165502</a> | |
dc.relation.haspart | <b>Artikkeli V:</b> Koppinen, P., Lievonen, J., Ahlskog, M., & Maasilta, I. (2007). Tunnel junction based displacement sensing for nanoelectromechanical systems. <i> Journal of Physics: Conference Series, 92, 012051.</i> DOI: <a href="https://doi.org/10.1088/1742-6596/92/1/012051"target="_blank">10.1088/1742-6596/92/1/012051</a> | |
dc.relation.haspart | <b>Artikkeli VI:</b> Koppinen, P., Lievonen, J., Ahlskog, M., & Maasilta, I. (2010). Strain sensing with submicron Al-AlOx-Al tunnel junctions. <i>Review of Scientific Instruments, 81, 23901.</i> DOI: <a href="https://doi.org/10.1063/1.3298582"target="_blank">10.1063/1.3298582</a> | |
dc.relation.isversionof | ISBN 978-951-39-3581-8 | |
dc.rights | In Copyright | |
dc.subject.other | thermal annealing | |
dc.subject.other | tunnel junction | |
dc.subject.other | SINIS refrigeration | |
dc.subject.other | SINIS thermometer | |
dc.subject.other | strain sensing | |
dc.title | Applications of tunnel junctions in low-dimensional nanostructures | |
dc.type | doctoral thesis | |
dc.identifier.urn | URN:ISBN:978-951-39-3582-5 | |
dc.type.dcmitype | Text | en |
dc.type.ontasot | Väitöskirja | fi |
dc.type.ontasot | Doctoral dissertation | en |
dc.contributor.tiedekunta | Matemaattis-luonnontieteellinen tiedekunta | fi |
dc.contributor.tiedekunta | Faculty of Mathematics and Science | en |
dc.contributor.yliopisto | University of Jyväskylä | en |
dc.contributor.yliopisto | Jyväskylän yliopisto | fi |
dc.contributor.oppiaine | Fysiikka | fi |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | |
dc.relation.issn | 0075-465X | |
dc.relation.numberinseries | no. 7/2009 | |
dc.rights.accesslevel | openAccess | |
dc.type.publication | doctoralThesis | |
dc.rights.url | https://rightsstatements.org/page/InC/1.0/ | |