dc.contributor.advisor | Riekkinen, Janne | |
dc.contributor.author | Kokko, Santtu | |
dc.date.accessioned | 2024-06-19T08:25:50Z | |
dc.date.available | 2024-06-19T08:25:50Z | |
dc.date.issued | 2024 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/96012 | |
dc.description.abstract | Tilinpäätöstietoja koskevat petokset ovat yksi talouspetosten merkittävimmistä ja huomattavimmista petosmuodoista. Tilinpäätöspetoksia voidaan pitää erittäin merkittävänä taloudellisen petoksen tyyppinä, koska niiden aiheuttamat taloudelliset tappiot ovat muihin taloudellisiin petoksiin verrattuna hyvin suuret, ja tilinpäätöspetokset aiheuttavat paljon negatiivisia vaikutuksia monille eri sidosryhmille. Tutkimukset ovat myös osoittaneet, että perinteisesti ihmisen tekemä tilinpäätösten tarkastaminen on epätarkkaa ja aikaa vievää sekä vain suhteellisen pieni osuus petoksista onnistutaan havaitsemaan. Lisääntyneen petosten määrän takia monet eri tahot ovat korostaneet tarvetta tehokkaaseen tilinpäätöspetosten havaitsemiseen. Tilinpäätöspetosten havaitsemiseksi onkin kehitetty erilaisia älykkäitä ja algoritmeihin pohjautuvia menetelmiä, joiden avulla pyritään tehostamaan tilinpäätöspetosten havaitsemista. Tässä kandidaatintutkielmassa tutkittiin, miten erilaiset algoritmeihin pohjautuvat menetelmät, kuten koneoppimisen, syväoppimisen ja datanlouhinnan menetelmät, suoriutuvat tilinpäätöspetosten havaitsemisessa ja kuinka menetelmien avulla yritykset voidaan luokitella tilinpäätöksien perusteella petollisiksi tai ei-petollisiksi. Tutkielman toteutettiin kuvailevana kirjallisuuskatsauksena. Tutkielmassa selvisi, että tilinpäätöspetosten havaitsemiseen käytetyillä petosindikaattoreilla on huomattava merkitys siihen, kuinka tarkasti yrityksiä voidaan luokitella oikein petollisiksi tilinpäätöksien perusteella. Huomioitavaa esimerkiksi oli, että taloudellisten tunnuslukujen käytön lisäksi oikeinluokittelun tarkkuutta lisää myös ei-taloudelliset tunnusluvut, kuten johdon kommentit liiketoiminnan suoriutumisesta. Yksittäisistä petoksentunnistusmenetelmistä tarkimmaksi osoittautuivat keinotekoisiin neuroverkkoihin perustuvat syväoppimisen menetelmät, jotka saavuttivat useissa tutkimuksissa lähes 95 % oikeinluokittelutarkkuuden tilinpäätöspetoksissa. | fi |
dc.description.abstract | Financial statement fraud is one of the most significant and noteworthy forms of financial fraud. They can be considered highly significant due to their substantial costs compared to other types of financial fraud, and they cause numerous negative effects on various stakeholders. Additionally, studies have shown that traditionally human-based financial statement audits are inaccurate and time-consuming, with only a relatively small portion of frauds being successfully detected. As a result of the increased level of fraud, a number of stakeholders have highlighted the need for effective detection of financial statement fraud. Consequently, a range of intelligent and algorithm-based methods have been developed to improve the detection of financial statement fraud. This bachelor's thesis investigated how different algorithm-based methods, such as machine learning, deep learning and data mining methods, perform in detecting financial statement frauds and how these methods can be used to classify companies as fraudulent or non-fraudulent based on their financial statements. The thesis was conducted as a descriptive literature review. The study found that the fraud indicators used for detecting financial statement frauds significantly influence the accuracy of fraud detection. For example, it was noted that in addition to the use of financial indicators, the accuracy of the classification is also enhanced by non-financial indicators, such as management comments on business performance. Among the individual fraud detection methods, deep learning methods based on artificial neural networks proved to be the most accurate, achieving almost 95% accuracy in financial statement fraud classification in several studies. | en |
dc.format.extent | 38 | |
dc.language.iso | fi | |
dc.subject.other | tilinpäätöspetos | |
dc.title | Tilinpäätöspetosten havaitseminen algoritmipohjaisten menetelmien avulla | |
dc.identifier.urn | URN:NBN:fi:jyu-202406194778 | |
dc.type.ontasot | Bachelor's thesis | en |
dc.type.ontasot | Kandidaatintyö | fi |
dc.contributor.tiedekunta | Informaatioteknologian tiedekunta | fi |
dc.contributor.tiedekunta | Faculty of Information Technology | en |
dc.contributor.laitos | Informaatioteknologia | fi |
dc.contributor.laitos | Information Technology | en |
dc.contributor.yliopisto | Jyväskylän yliopisto | fi |
dc.contributor.yliopisto | University of Jyväskylä | en |
dc.contributor.oppiaine | Tietojärjestelmätiede | fi |
dc.contributor.oppiaine | Information Systems Science | en |
dc.rights.copyright | Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty. | fi |
dc.rights.copyright | This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited. | en |
dc.contributor.oppiainekoodi | 601 | |
dc.subject.yso | tiedonlouhinta | |
dc.subject.yso | syväoppiminen | |
dc.subject.yso | tilinpäätös | |
dc.subject.yso | algoritmit | |
dc.subject.yso | koneoppiminen | |