dc.contributor.author | Mahini, Reza | |
dc.date.accessioned | 2023-11-28T15:43:21Z | |
dc.date.available | 2023-11-28T15:43:21Z | |
dc.date.issued | 2023 | |
dc.identifier.isbn | 978-951-39-9863-9 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/92118 | |
dc.description.abstract | Understanding human brain activity through spatiotemporal electroencephalogram (EEG) analysis has gained prominence, with cluster analysis emerging as a valuable tool. While traditional event-related potential (ERP) analysis techniques for identifying interesting ERPs involve subjective time window selection, conventional cluster analysis focusing on spatial dynamics amplifies the risk of component identification errors when data is imperfect. Consequently, they do not offer a unified, appropriate time window determination approach for testing experimental hypotheses.
This thesis introduces a series of consensus clustering-based approaches for examining brain responses in spatiotemporal ERP/EEG data. Specifically, the first study proposed a data-driven approach for determining the optimal number of clusters by evaluating the inner similarity of the estimated time window. A consensus clustering method from diverse clustering methods was also designed, including an M-N plot method for configuration. The second study proposed a multi-set consensus clustering approach across individual subjects to determine an appropriate (i.e., precise and stable) time window of ERP of interest. The time window determination method we developed examined two criteria for selecting a representative cluster map: inner similarity and hypothetical temporal coverage. The third study presented a multi-set consensus clustering approach for clustering analysis of single-trial EEG epochs that aimed to identify individual subjects’ evoked responses (ERP components). This study also introduced a standardized approach for evaluating scores from signal processing methods. Lastly, the fourth study introduced an ensemble deep clustering pipeline for reliably determining the time window when data quality is imperfect, revealing the adeptness of deep neural networks in feature extraction and time window determination.
In conclusion, this thesis offers a promising computational framework for ERP identification in group-level analysis. The aforementioned studies enhance our understanding of human brain function, have broad implications for computational neuroscience, and suggest adaptable solutions for future neuroimaging investigations.
Keywords: Electroencephalography (EEG), Event-related potentials (ERPs), ensemble learning, consensus clustering, time window, cognitive process, deep clustering, cluster aggregation. | en |
dc.description.abstract | Tämä väitöskirja esittelee konsensusklusterointipohjaisia lähestymistapoja aivojen vastausten tutkimiseen ERP/EEG-datasta saatavan tiedon avulla. Tutkimuksessa ehdotetaan datavetoista lähestymistapaa optimaalisen klusterien lukumäärän määrittämiseksi arvioimalla estimoidun aikaluokan sisäistä samankaltaisuutta. Tutkimuksessa suunniteltiin myös monipuolisia klustereita soveltava konsensusklusterointimenetelmä, joka sisältää M-N-kaaviomenetelmän konfigurointia varten. Lisäksi väitöskirjassa ehdotetaan monijoukkoista konsensusklusterointimenetelmää yksittäisille koehenkilöille, jotta löydetään sopiva (tarkka ja vakaa) aikaluokka kiinnostaville ERP:lle. Kehitetty aikaluokan määritysmenetelmä tarkastelee kahta kriteeriä edustavan klusterikartan valintaan: sisäinen samankaltaisuus ja hypoteettinen ajallinen kattavuus. Kolmas tutkimus esittelee monijoukkoisen konsensus¬klusterointi-menetelmän yksittäisten koetilaisuuksien klusterianalyysille. Sen tavoitteena on tunnistaa yksilöllisten koehenkilöiden aiheuttamia vastauksia (ERP-komponentteja). Tämä tutkimus esitteli myös standardoidun lähestymistavan signaalinkäsittelymenetelmien pisteiden arvioimiseksi. Viimeiseksi neljäs tutkimus esitteli ryhmän syväklusterointiputken aikaluokan määrittämiseksi luotettavasti, kun datan laatu on epätäydellistä. Tutkimus paljasti syvien neuroverkkojen soveltuvuuden ominaisuuksien erotteluun ja aikaluokan määritykseen.
Tämä väitöskirja tarjoaa lupaavan laskennallisen kehyksen ERP:n tunnistamiseen ryhmätasolla. Edellä mainitut tutkimukset lisäävät ymmärrystä ihmisaivojen toiminnasta. Ne vaikuttavat laajasti laskennalliseen neurotieteeseen ehdottaessaan mukautuvia ratkaisuja tuleviin neurokuvantamistutkimuksiin.
Avainsanat: Elektroenkefalografia (EEG), tapahtumakohtainen potentiaali (ERP), ensemble-opetus, konsensusklusterointi, aikaluokka, kognitiivinen prosessi, syvä klusterointi, klusterien yhdistäminen. | fi |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Jyväskylän yliopisto | |
dc.relation.ispartofseries | JYU Dissertations | |
dc.relation.haspart | <b>Artikkeli I:</b> Mahini, R., Xu, P., Chen, G., Li, Y., Ding, W., Zhang, L., Qureshi, N. K., Hämäläinen, T., Nandi, A. K., & Cong, F. (2022). Optimal Number of Clusters by Measuring Similarity Among Topographies for Spatio-Temporal ERP Analysis. <i>Brain Topography, 35(5-6), 537-557.</i> DOI: <a href="https://doi.org/10.1007/s10548-022-00903-2"target="_blank"> 10.1007/s10548-022-00903-2</a> | |
dc.relation.haspart | <b>Artikkeli II:</b> Mahini, R., Li, Y., Ding, W., Fu, R., Ristaniemi, T., Nandi, A. K., Chen, G., & Cong, F. (2020). Determination of the Time Window of Event-Related Potential Using Multiple-Set Consensus Clustering. <i>Frontiers in Neuroscience, 14, Article 521595.</i> DOI: <a href="https://doi.org/10.3389/fnins.2020.521595"target="_blank"> 10.3389/fnins.2020.521595</a> | |
dc.relation.haspart | <b>Artikkeli III</b> Reza Mahini, Guanghui Zhang, Tiina Parviainen, Rainer Düsing, Asoke
K. Nandi, Fengyu Cong, and Timo Hämäläinen. (2023). Brain evoked response qualification using multi-set consensus clustering: toward single-
trial EEG analysis. <i>Submitted to Brain Topography.</i> <a href="https://doi.org/10.21203/rs.3.rs-3586574/v1"target="_blank"> Preprint</a> | |
dc.relation.haspart | <b>Artikkeli IV:</b> Mahini, R., Li, F., Zarei, M., Nandi, A. K., Hämäläinen, T., & Cong, F. (2023). Ensemble deep clustering analysis for time window determination of event-related potentials. <i>Biomedical Signal Processing and Control, 86, B, Article 105202.</i> DOI: <a href="https://doi.org/10.1016/j.bspc.2023.105202"target="_blank"> 10.1016/j.bspc.2023.105202</a> | |
dc.rights | In Copyright | |
dc.title | Consensus clustering for group-level analysis of event-related potential data | |
dc.type | Diss. | |
dc.identifier.urn | URN:ISBN:978-951-39-9863-9 | |
dc.contributor.tiedekunta | Faculty of Information Technology | en |
dc.contributor.tiedekunta | Informaatioteknologian tiedekunta | fi |
dc.contributor.yliopisto | University of Jyväskylä | en |
dc.contributor.yliopisto | Jyväskylän yliopisto | fi |
dc.relation.issn | 2489-9003 | |
dc.rights.copyright | © The Author & University of Jyväskylä | |
dc.rights.accesslevel | openAccess | |
dc.type.publication | doctoralThesis | |
dc.format.content | fulltext | |
dc.rights.url | https://rightsstatements.org/page/InC/1.0/ | |