Efficient evolutionary optimization algorithm : filtered differential evolution
Julkaistu sarjassa
Jyväskylän yliopisto. Reports of the Department of Mathematical Information Technology. Series B. Scientific computingTekijät
Päivämäärä
2008Solving many real-life engineering problems requires often global and efficient (in terms of objective function evaluations) treatment, because function values involved are produced via time consuming simulations. In this study, we consider optimization problems of this type by discussing some drawbacks of the current surrogate assisted methods and then introduce a new population based optimization algorithm, which borrows features of the well-known Differential Evolution algorithm, but improves its efficiency by filtering away ineffective trial points.
ISBN
978-951-39-9036-7Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Digitoidut julkaisut [271]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Comparing ranking-based collaborative filtering algorithms to a rating-based alternative in recommender systems context
Koskela, Pentti (2017)Suuri sisältövalikoima eri internet palveluissa, kuten verkkokaupoissa, voi aiheuttaa liian suurta informaatiomäärää, mikä heikentää asiakaskokemusta. Suosittelujärjestelmät ovat teknologioita, jotka tukevat asiakkaan ... -
The impact of visual working memory capacity on the filtering efficiency of emotional face distractors
Ye, Chaoxiong; Xu, Qianru; Liu, Qiang; Cong, Fengyu; Saariluoma, Pertti; Ristaniemi, Tapani; Astikainen, Piia (Elsevier B.V., 2018)Emotional faces can serve as distractors for visual working memory (VWM) tasks. An event-related potential called contralateral delay activity (CDA) can measure the filtering efficiency of face distractors. Previous ... -
Distributed multi-objective optimization methods for shape design using evolutionary algorithms and game strategies
Leskinen, Jyri (University of Jyväskylä, 2012) -
A Simple Indicator Based Evolutionary Algorithm for Set-Based Minmax Robustness
Zhou-Kangas, Yue; Miettinen, Kaisa (Springer, 2018)For multiobjective optimization problems with uncertain parameters in the objective functions, different variants of minmax robustness concepts have been defined in the literature. The idea of minmax robustness is to ... -
Multiobjective shape design in a ventilation system with a preference-driven surrogate-assisted evolutionary algorithm
Chugh, Tinkle; Kratky, Tomas; Miettinen, Kaisa; Jin, Yaochu; Makkonen, Pekka (ACM, 2019)We formulate and solve a real-world shape design optimization problem of an air intake ventilation system in a tractor cabin by using a preference-based surrogate-assisted evolutionary multiobjective optimization algorithm. ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.