Recommending next store visit for new customers in large shopping malls
Tekijät
Päivämäärä
2021Tekijänoikeudet
Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.
Nowadays widespread availability of complimentary WI-FI inside large shopping malls and the increasing precision of WI-FI positioning systems make it possible to track a customer’s trajectory inside shopping malls via their mobile devices. This trajectory data open the door for many useful applications that can help both customers and store owners. This study presents an application aimed for new customers of a large shopping mall, who are not familiar with the layout and available stores inside, to navigate the mall more effectively. To achieve this, we first find common customer intents (store visit patterns) inside the mall, and then fit a newly arrived customer’s intent to one of these common intents. After finding possible intents for a customer, we use the movement patterns for available intents to produce a next-store recommendation for the customer. Fuzzy c-means clustering technique will be used to find intents from customer trajectories. All customer visits belonging to these intents will be processed as sequential trajectory steps. These sequential steps are enriched with some other peripheral information related to day, time, duration, and then are fed into a neural network architecture consisting of RNN and Dense layers to model the movement patterns related to intents. Results of this model will provide recommendations to new-coming customers for their next store visit. Finally, using a set of real life trajectory data, predictions from the model will be presented and interpreted.
...
Asiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Pro gradu -tutkielmat [29556]
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Taxonomy-Informed Neural Networks for Smart Manufacturing
Terziyan, Vagan; Vitko, Oleksandra (Elsevier, 2024)A neural network (NN) is known to be an efficient and learnable tool supporting decision-making processes particularly in Industry 4.0. The majority of NNs are data-driven and, therefore, depend on training data quantity ... -
Towards a Great Design of Conceptual Modelling
Kiyoki, Yasushi; Thalheim, Bernhard; Duží, Marie; Jaakkola, Hannu; Chawakitchareon, Petchporn; Heimbürger, Anneli (IOS Press, 2020)Humankind faces a most crucial mission; we must endeavour, on a global scale, to restore and improve our natural and social environments. This is a big challenge for global information systems development and for their ... -
Data Analytics in Healthcare : A Tertiary Study
Taipalus, Toni; Isomöttönen, Ville; Erkkilä, Hanna; Äyrämö, Sami (Springer Science and Business Media LLC, 2023)The field of healthcare has seen a rapid increase in the applications of data analytics during the last decades. By utilizing different data analytic solutions, healthcare areas such as medical image analysis, disease ... -
The Impact of Regularization on Convolutional Neural Networks
Zeeshan, Khaula (2018)Syvä oppiminen (engl. deep learning) on viime aikoina tullut suosituimmaksi koneoppimisen menetelmäksi. Konvoluutio(hermo)verkko on yksi suosituimmista syvän oppimisen arkkitehtuureista monimutkaisiin ongelmiin kuten kuvien ... -
Using deep neural networks for kinematic analysis : challenges and opportunities
Cronin, Neil J. (Elsevier BV, 2021)Kinematic analysis is often performed in a lab using optical cameras combined with reflective markers. With the advent of artificial intelligence techniques such as deep neural networks, it is now possible to perform such ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.