Show simple item record

dc.contributor.advisorToppari, Jussi
dc.contributor.advisorMarkesevic, Nemanja
dc.contributor.authorQureshi, Hassan Ali
dc.date.accessioned2021-08-02T07:27:42Z
dc.date.available2021-08-02T07:27:42Z
dc.date.issued2021
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/77251
dc.description.abstractThe light-matter coupling is a physical phenomenon in which optical modes of light are in resonance with the energy level of matter, thus enabling exchange of energy between them. The strong light-matter coupling is achieved when energy levels of the matter are in resonance with confined light mode and they start exchanging energy in such a way that the rate of this energy exchange overcomes the energy dissipation rate of the system. This usually needs a resonance with a highly confined light mode. The strongly light-matter coupled system acquires new hybrid energy levels that are different from the matter’s energy levels. This regime offers a wide range of applications in optoelectronics and chemistry. The strong coupling has made possible the manipulation of chemical reactions without changing the chemical environment of the system, giving rise to a new branch of chemistry known as the polariton chemistry. This thesis provides comprehensive study on the enhancement of strong coupling by using hybrid cavities made up of two different materials couple to the same confined optical mode. The study includes the absorption evolution of the HBQ molecule system and a hybrid system consisting of HBQ molecule and polycrystalline ZnO. The strong coupling was achieved by depositing molecules inside the Fabry- Pérot cavity. The Rabi split energies of HBQ cavities were 205 meV, 228 meV, and 279 eV whereas, HBQ-ZnO hybrid cavities showed Rabi split energies of 300 meV and 310 meV. The study also includes the effect of strong coupling by changing the cavity geometry. The Rabi split energies in modified geometry were observed as 380 meV, 430 meV, and 490 meV.en
dc.format.extent49
dc.language.isoen
dc.subject.otherstrong coupling
dc.subject.otherpolariton chemistry
dc.subject.otherhybrid microcavities
dc.subject.otheroptical doping
dc.subject.other10-Hydroxybenzo[h]quinoline
dc.titleReinforcing strong coupling with hybrid microcavities for polariton chemistry application
dc.identifier.urnURN:NBN:fi:jyu-202108024419
dc.type.ontasotMaster’s thesisen
dc.type.ontasotPro gradu -tutkielmafi
dc.contributor.tiedekuntaMatemaattis-luonnontieteellinen tiedekuntafi
dc.contributor.tiedekuntaFaculty of Sciencesen
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.oppiaineFysiikkafi
dc.contributor.oppiainePhysicsen
dc.rights.copyrightJulkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.fi
dc.rights.copyrightThis publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.en
dc.contributor.oppiainekoodi4021
dc.subject.ysosinkkioksidi
dc.subject.ysopolaritonit
dc.subject.ysofysiikka
dc.subject.ysoohutkalvot
dc.subject.ysooptiset ominaisuudet
dc.subject.ysosinkkioksidi
dc.subject.ysooptoelektroniikka
dc.subject.ysozinc oxide
dc.subject.ysopolaritons
dc.subject.ysophysics
dc.subject.ysothin films
dc.subject.ysooptical properties
dc.subject.ysozinc oxide
dc.subject.ysooptoelectronics


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record