Show simple item record

dc.contributor.advisorAndberg, Martina
dc.contributor.advisorYlänne, Jari
dc.contributor.authorHiltunen, Mimmu
dc.date.accessioned2021-06-08T09:22:04Z
dc.date.available2021-06-08T09:22:04Z
dc.date.issued2021
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/76324
dc.description.abstractSustainably produced fuels and materials will be critical for the survival of our species, but a cost and time efficient production method is yet to be developed. Plant-based waste could be a part of the solution: one of its main components, cellulose, is a starting point for the production of biofuels and chemicals. However, the recalcitrant nature of the main component of plant-based waste, lignocellulose, as well as the enigmatic nature of lignocellulolytic enzymes and their cooperation, has hindered adopting applications on a global scale. The aim of this study was to characterise three fungal enzymes with potential roles in lignocellulose degradation. First, we aimed to characterise the activity and phylogenetic location, as well as build a homology model, of a novel Trichoderma reesei AA3_2 subfamily enzyme (TrAA3_2). Secondly, we aimed to characterise the H2O2 dependency as well as thermal and pH stability of two lytic polysaccharide monooxygenases (TrAA9A and PaAA9E). Thirdly, we aimed to evaluate the effects of TrAA3_2, TrAA9A, and PaAA9E on the hydrolysis of spruce biomass by a cellulase mixture. We found that TrAA3_2 is phylogenetically closest to glucose oxidases but were unable to detect activity with any of the assayed carbohydrate or alcohol substrates. The homology model revealed that the substrate-binding residues of TrAA3_2 differ from those found in two well-characterised oxidative glucose active enzymes, possibly explaining the apparent inactivity for glucose. Furthermore, we found both TrAA9A and PaAA9E to be active with both O2 and H2O2 as a cosubstrate, and to be stable at 40 C and pH 5–7. TrAA9A was found to enhance the hydrolytic efficiency of a cellulase cocktail mimicking commercial lignocellulolytic cocktails. Based on our results, TrAA9A and PaAA9A display both oxidase and peroxidase activity, and may be good candidates for practical applications.en
dc.format.extent52
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.rightsIn Copyrighten
dc.titleCharacterization of the auxiliary activity enzymes Trichoderma reesei TrAA3_2, TrAA9A and Podospora anserina PaAA9E, with potential roles in cellulose modification
dc.typemaster thesis
dc.identifier.urnURN:NBN:fi:jyu-202106083538
dc.type.ontasotPro gradu -tutkielmafi
dc.type.ontasotMaster’s thesisen
dc.contributor.tiedekuntaMatemaattis-luonnontieteellinen tiedekuntafi
dc.contributor.tiedekuntaFaculty of Sciencesen
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.oppiaineSolu- ja molekyylibiologiafi
dc.contributor.oppiaineCell and molecular biologyen
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.rights.accesslevelopenAccess
dc.type.publicationmasterThesis
dc.contributor.oppiainekoodi4013
dc.subject.ysoTrichoderma reesei
dc.subject.ysolignoselluloosa
dc.subject.ysobiomassa (teollisuus)
dc.subject.ysohydrolyysi
dc.subject.ysobiopolttoaineet
dc.subject.ysoTrichoderma reesei
dc.subject.ysolignocellulose
dc.subject.ysobiomass
dc.subject.ysohydrolysis
dc.subject.ysobiofuels
dc.format.contentfulltext
dc.rights.urlhttps://rightsstatements.org/page/InC/1.0/
dc.type.okmG2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright