University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Opinnäytteet
  • Pro gradu -tutkielmat
  • View Item
JYX > Opinnäytteet > Pro gradu -tutkielmat > View Item

Implementing artificial intelligence ethics in trustworthy systems development : extending ECCOLA to cover information governance principles

Thumbnail
View/Open
1.9 Mb

Downloads:  
Show download detailsHide download details  
Authors
Agbese, Mamia
Date
2021
Discipline
TietojärjestelmätiedeInformation Systems Science
Copyright
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.

 
This Master's thesis assesses how to extend a higher-level developmental method for trustworthy artificial intelligent systems, ECCOLA, by evaluating it with Information Governance principles. Artificial intelligent systems are ubiquitous, with their application prevalent in virtually all sectors. In addition, Artificial intelligent systems rely on data and information they collect from users for their development. These issues have prompted ethical concerns, especially as their usage crosses boundaries in sensitive areas such as health, transportation, and security, calling for better governance. As such, there is a need for developing ethical artificial intelligent systems with effective governance that users can trust with their information. Several guidelines exist to help facilitate these developments; however, very few transition into methods with virtually no method existing for higher-level development methods. ECCOLA is proposed as a solution in transitioning from guidelines to development methods at higher levels. The study extends ECCOLA by evaluating its ethical tenets with Information Governance principles (Generally Accepted Recordkeeping Principles, GARP®) as a governance framework to improve its robustness in line with ethical guidelines. This was accomplished by following the Design Science Research methodology approach using a conceptual framework based on ethical guidelines of the European Commission and content analysis. The findings reveal a vulnerability of the GARP® principles of Retention and Disposition in ECCOLA. A possible solution artifact has been developed, which remains to be tested. ...
Keywords
tekoäly koneoppiminen etiikka älytekniikka luottamus artificial intelligence machine learning ethics intelligent systems trust
URI

http://urn.fi/URN:NBN:fi:jyu-202105283279

Metadata
Show full item record
Collections
  • Pro gradu -tutkielmat [23991]

Related items

Showing items with similar title or keywords.

  • Governance of Ethical and Trustworthy Al Systems : Research Gaps in the ECCOLA Method 

    Agbese, Mamia; Alanen, Hanna-Kaisa; Antikainen, Jani; Halme, Erika; Isomäki, Hannakaisa; Jantunen, Marianna; Kemell, Kai-Kristian; Rousi, Rebekah; Vainio-Pekka, Heidi; Vakkuri, Ville (IEEE, 2021)
    Advances in machine learning (ML) technologies have greatly improved Artificial Intelligence (Al) systems. As a result, Al systems have become ubiquitous, with their application prevalent in virtually all sectors. However, ...
  • ECCOLA : a Method for Implementing Ethically Aligned AI Systems 

    Vakkuri, Ville; Kemell, Kai-Kristian; Abrahamsson, Pekka (IEEE, 2020)
    Various recent Artificial Intelligence (AI) system failures, some of which have made the global headlines, have highlighted issues in these systems. These failures have resulted in calls for more ethical AI systems that ...
  • ECCOLA : a method for implementing ethically aligned AI systems 

    Vakkuri, Ville; Kemell, Kai-Kristian; Jantunen, Marianna; Halme, Erika; Abrahamsson, Pekka (Elsevier, 2021)
    Artificial Intelligence (AI) systems are becoming increasingly widespread and exert a growing influence on society at large. The growing impact of these systems has also highlighted potential issues that may arise from ...
  • Adversarial Attack’s Impact on Machine Learning Model in Cyber-Physical Systems 

    Vähäkainu, Petri; Lehto, Martti; Kariluoto, Antti (Peregrine Technical Solutions, 2020)
    Deficiency of correctly implemented and robust defence leaves Internet of Things devices vulnerable to cyber threats, such as adversarial attacks. A perpetrator can utilize adversarial examples when attacking Machine ...
  • Artificial Intelligence for Cybersecurity : A Systematic Mapping of Literature 

    Wiafe, Isaac; Koranteng, Felix N.; Obeng, Emmanuel N.; Assyne, Nana; Wiafe, Abigail; Gulliver, Stephen R. (IEEE, 2020)
    Due to the ever-increasing complexities in cybercrimes, there is the need for cybersecurity methods to be more robust and intelligent. This will make defense mechanisms to be capable of making real-time decisions that can ...
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement

Unless otherwise specified, publicly available JYX metadata (excluding abstracts) may be freely reused under the CC0 waiver.
Open Science Centre