Massadata ja koneoppiminen makrotaloustieteessä
Authors
Date
2020Copyright
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Informaatioyhteiskunta tuottaa itsestään jatkuvasti kasvavalla nopeudella tietoa, jota on mahdollista hyödyntää uusien menetelmien, kuten koneoppimisen avulla. Taloustieteilijät ovat viimeisten vuosikymmenten aikana kehittäneet tapoja tehdä talouden ennusteita käyttäen useita erilaisia tiedonlähteitä samanaikaisesti. Tämä kirjallisuuskatsauksena toteutettu tutkielma vastaa kysymykseen, kuinka suuria datamassoja voidaan hyödyntää makrotaloustieteessä, ja kuinka koneoppimisen menetelmät soveltuvat korvaamaan ja täydentämään makrotaloustieteen perinteisesti käyttämiä ekonometrian menetelmiä ennustamisessa. Tutkimuksessa havaittiin, että prosessi hyödyntää koneoppimisen menetelmiä täysin on makrotaloustieteessä edelleen vaiheessa. Tutkimustulokset osoittavat, että esimerkiksi verkkoharavoinnilla hankittu data ja hakukonedata sisältävät informaatiota, jota perinteisistä tietolähteistä ei löydy. Hadoop ja NoSQL-tietokannat osoittautuvat tärkeiksi datanhallinnan työkaluiksi. Monet uudet tiedonlähteet sopivat reaaliaikaiseen ennustamiseen, sillä dataa on julkisesti tarjolla päivittäistasolla.
...
The modern information society creates data about itself at an ever-increasing pace. With emerging technologies like machine learning, it is possible to make use of this data. For the last three decades, economists have developed models that predict using a multiple data source approach. This literature review answers the question how Big Data can be utilized in macroeconomics and how machine learning technologies can complement or replace econometrical methods in prediction. The process of utilizing machine learning in macroeconomics was found to be incomplete at the time of this review. The results show that data gathered with web scraping and search engine statistics contain information that is not present in contemporary datasets. Apache Hadoop and NoSQL databases prove to be important tools in managing Big Data. Many new data sources that can be collected at a high frequency are useful in macroeconomic nowcasting.


Metadata
Show full item recordCollections
- Kandidaatintutkielmat [4198]
Related items
Showing items with similar title or keywords.
-
Machine learning in macroeconomic forecasting
Nyholm, Sebastian (2022)Dataa on aina ollut saatavilla paljon taloudesta, mutta sen kaiken käyttäminen talouden ennustamisessa on ollut hankalaa. Perinteiset ennustamisen ja arvioinnin mallit eivät ole osoittautuneet olevan kovin tarkkoja ... -
Koneoppiminen ja massadata terveydenhuollossa
Colliander, Jeremias (2022)Terveydenhuollon järjestelmät tuottavat valtavan määrän uutta dataa päivittäin. Dataa on niin paljon, että puhutaan jo massadatasta. Tästä datasta on mahdollista etsiä tietämystä, jolla terveydenhuoltoa pystyttäisiin ... -
Predicting high-growth firms with machine learning methods
Virtanen, Joosua (2019)Kiinnostus nopeakasvuisia yrityksiä kohtaan on viime aikoina kasvanut politiikantekijöiden sekä sijoittajien keskuudessa. Tässä maisterin tutkielmassa tutkin, ovatko koneoppimismenetelmät hyödyllisiä tulevaisuuden ... -
Comparing the forecasting performance of logistic regression and random forest models in criminal recidivism
Aaltonen, Olli-Pekka (2016)Rikosseuraamusalalla on viime vuosina kehitetty uusintarikollisuutta ennustavia malleja (Tyni, 2015), jotka perustuvat tyypillisesti rekisteripohjaisiin mittareihin, jotka mittaavat mm. tuomitun sukupuolta, ikää, rikostaustaa ... -
Osakekurssien ennustaminen koneoppimisen menetelmillä
Hoikkala, Kalle (2021)Osakemarkkinoiden ennustaminen ja ennustettavuus on ollut polttava kysymys sijoittajien ja tutkijoiden keskuudessa jo vuosikymmeniä. Tekoälyn suosion kasvun myötä koneoppimisen menetelmistä on pyritty löytämään keinoja ...