Convolutional neural networks and stochastic modelling in hyperspectral data analysis
Julkaistu sarjassa
JYU DissertationsTekijät
Päivämäärä
2020Tekijänoikeudet
© The Author & University of Jyväskylä
Hyperspectral imaging is relatively new and rapidly growing field of research.
The datasets produced by hyperspectral imaging are large, and handling such
data requires large computational resources. Therefore, there is a need for developing
machine learning methods that can cope with the data, and methods to reduce
the necessary amount of data gathering missions. For the latter, problem the
author and his co-authors have developed stochastic modelling and generative
adversarial neural networks for data augmentation. In machine learning, they
have experimented with using convolutional neural network in conjunction with
said stochastic model in order to retrieve useful information from hyperspectral
data. Additionally, the author lists useful Python packages for hyperspectral data
analysis.
Keywords: Hyperspectral imaging, Convolutional neural network, Stochastic modelling,
Biophysical parameter retrieval, Data augmentation
Julkaisija
Jyväskylän yliopistoISBN
978-951-39-8453-3ISSN Hae Julkaisufoorumista
2489-9003Julkaisuun sisältyy osajulkaisuja
- Artikkeli I: Annala, L., Eskelinen, M., Hämäläinen, J., Riihinen, A., & Pölönen, I. (2018). Practical Approach for Hyperspectral Image Processing in Python. In J. Jiang, A. Shaker, H. Zhang, X. Liang, B. Osmanoglu, U. Soergel, . . . K. Komp (Eds.), ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing” (pp. 45-52). International Society for Photogrammetry and Remote Sensing. DOI: 10.5194/isprs-archives-XLII-3-45-2018
- Artikkeli II: Pölönen, I., Annala, L., Rahkonen, S., Nevalainen, O., Honkavaara, E., Tuominen, S., . . . , & Hakala, T. (2019). Tree Species Identification Using 3D Spectral Data and 3D Convolutional Neural Network. In WHISPERS 2018 : 9th Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing. IEEE. DOI: 10.1109/WHISPERS.2018.8747253
- Artikkeli III: Pölönen, I., Rahkonen, S., Annala, L., & Neittaanmäki, N. (2019). Convolutional neural networks in skin cancer detection using spatial and spectral domain. In B. Choi, & H. Zeng (Eds.), Proceedings of SPIE Volume 10851 : Photonics in Dermatology and Plastic Surgery 2019 (pp. 108510B). SPIE, The International Society for Optical Engineering. DOI: 10.1117/12.2509871
- Artikkeli IV: Annala, Leevi; Honkavaara, Eija; Tuominen, Sakari; Pölönen, Ilkka (2020). Chlorophyll Concentration Retrieval by Training Convolutional Neural Network for Stochastic Model of Leaf Optical Properties (SLOP) Inversion. Remote Sensing, 12 (2), 283. DOI: 10.3390/rs12020283
- Artikkeli V: Annala, Leevi and Pölönen, Ilkka. (2020). Kubelka-Munk Model and Stochastic Model Comparison in Skin Physical Parameter Retrieval. Computational Sciences and Artificial Intelligence in Industry – New digital technologies for solving future societal and economical challenges. In press.
- Artikkeli VI: Annala, Leevi; Äyrämö, Sami; Pölönen, Ilkka (2020). Comparison of Machine Learning Methods in Stochastic Skin Optical Model Inversion. Applied Sciences, 10 (20), 7097. DOI: 10.3390/app10207097
- Artikkeli VII: Annala, Leevi; Neittaanmäki, Noora; Paoli, John; Zaar, Oscar; Pölönen, Ilkka (2020). Generating Hyperspectral Skin Cancer Imagery using Generative Adversarial Neural Network. In EMBC 2020 : Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1600-1603. DOI: 10.1109/EMBC44109.2020.9176292
Asiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- JYU Dissertations [852]
- Väitöskirjat [3578]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Chlorophyll Concentration Retrieval by Training Convolutional Neural Network for Stochastic Model of Leaf Optical Properties (SLOP) Inversion
Annala, Leevi; Honkavaara, Eija; Tuominen, Sakari; Pölönen, Ilkka (MDPI AG, 2020)Miniaturized hyperspectral imaging techniques have developed rapidly in recent years and have become widely available for different applications. Combining calibrated hyperspectral imagery with inverse physically based ... -
Using Aerial Platforms in Predicting Water Quality Parameters from Hyperspectral Imaging Data with Deep Neural Networks
Hakala, Taina; Pölönen, Ilkka; Honkavaara, Eija; Näsi, Roope; Hakala, Teemu; Lindfors, Antti (Springer, 2020)In near future it is assumable that automated unmanned aerial platforms are coming more common. There are visions that transportation of different goods would be done with large planes, which can handle over 1000 kg payloads. ... -
Tree species classification of drone hyperspectral and RGB imagery with deep learning convolutional neural networks
Nezami, Somayeh; Khoramshahi, Ehsan; Nevalainen, Olli; Pölönen, Ilkka; Honkavaara, Eija (MDPI AG, 2020)Interest in drone solutions in forestry applications is growing. Using drones, datasets can be captured flexibly and at high spatial and temporal resolutions when needed. In forestry applications, fundamental tasks include ... -
Comparison of Machine Learning Methods in Stochastic Skin Optical Model Inversion
Annala, Leevi; Äyrämö, Sami; Pölönen, Ilkka (MDPI AG, 2020)In this study, we compare six different machine learning methods in the inversion of a stochastic model for light propagation in layered media, and use the inverse models to estimate four parameters of the skin from the ... -
Generating Hyperspectral Skin Cancer Imagery using Generative Adversarial Neural Network
Annala, Leevi; Neittaanmäki, Noora; Paoli, John; Zaar, Oscar; Pölönen, Ilkka (IEEE, 2020)In this study we develop a proof of concept of using generative adversarial neural networks in hyperspectral skin cancer imagery production. Generative adversarial neural network is a neural network, where two neural ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.