Show simple item record

dc.contributor.advisorVakkuri, Ville
dc.contributor.advisorAbrahamsson, Pekka
dc.contributor.authorVainio-Pekka, Heidi
dc.date.accessioned2020-12-01T10:39:57Z
dc.date.available2020-12-01T10:39:57Z
dc.date.issued2020
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/72892
dc.description.abstractThis paper presents the Systemic Mapping Study results of the Ethics of Artificial Intelligence (AI) research. AI ethics is an emerging and versatile topic interesting to different domains. This paper focuses on understanding the role of Explainable AI in the research field and how the topic has been studied. Explainable AI refers to AI systems that are interpretable or understandable to humans. It aims to increase the transparency of systems and make systems more trustworthy. Non-transparent AI systems are have already shown some of their weaknesses, such as in some cases favoring men over women in the hiring process. The research fields of AI ethics and Explainable AI lack a common framework and conceptualization. There is no clarity of the field’s depth and versatility; hence a systemic approach to understanding the corpus was needed. The systemic review offers an opportunity to detect research gaps and focus points. A Systemic Mapping Study is a tool to performing a repeatable and continuable literature search. This paper contributes to the research field with a Systemic Map that visualizes what, how, when, and why Explainable AI has been studied in AI ethics. Within the scope is the detection of primary papers in AI ethics, which opens possibilities to continue the mapping process in other papers. The third contribution is the primary empirical conclusions drawn from the analysis and reflect existing research and practical implementation.fi
dc.format.extent96
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.subject.otherAI ethics
dc.subject.otherexplainable AI
dc.subject.othersystemic mapping study
dc.titleThe role of explainable AI in the research field of AI ethics : systematic mapping study
dc.identifier.urnURN:NBN:fi:jyu-202012016853
dc.type.ontasotPro gradu -tutkielmafi
dc.type.ontasotMaster’s thesisen
dc.contributor.tiedekuntaInformaatioteknologian tiedekuntafi
dc.contributor.tiedekuntaFaculty of Information Technologyen
dc.contributor.laitosInformaatioteknologiafi
dc.contributor.laitosInformation Technologyen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.oppiaineTietojärjestelmätiedefi
dc.contributor.oppiaineInformation Systems Scienceen
dc.rights.copyrightJulkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.fi
dc.rights.copyrightThis publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.en
dc.type.publicationmasterThesis
dc.contributor.oppiainekoodi601
dc.subject.ysoetiikka
dc.subject.ysotekoäly
dc.subject.ysoethics
dc.subject.ysoartificial intelligence
dc.format.contentfulltext
dc.type.okmG2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record