Näytä suppeat kuvailutiedot

dc.contributor.authorHoikkala, Ville
dc.date.accessioned2020-09-03T09:01:32Z
dc.date.available2020-09-03T09:01:32Z
dc.date.issued2020
dc.identifier.isbn978-951-39-8264-5
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/71620
dc.description.abstractBacteria are in constant interaction with their viruses, bacteriophages (phages). To prevent or abort phage infections, a variety of defence mechanisms have evolved. CRISPR-Cas, the only known adaptive bacterial immune system, targets intracellular phage genomes by utilizing genetic memories of past infections. A memory is formed during CRISPR adaptation when a fragment of a phage genome is integrated into a CRISPR array on the bacterial genome. This fragment, called a spacer, is later used in the interference phase to recognize and cleave phage genomes with matching sequences. While these core principles are shared by most CRISPR-Cas systems, many subtypes have not been thoroughly explored, especially in their native hosts or in natural environments. In this thesis, I characterize type II-C and VI-B CRISPR-Cas systems in the fish pathogen Flavobacterium columnare in association with its virulent phage. The first study describes how aquaculture settings can be harnessed for coevolutionary studies in semi-natural settings using bacteria that carry CRISPR-Cas loci. The second study shows F. columnare and its virulent phages evolving for several years in aquaculture, where coevolutionary dynamics were reflected by spacer acquisition in bacteria and genomic and host-range changes in phages. The third study examines the adaptation process of the II-C and VI-B CRISPR-Cas systems in the laboratory. The RNA-targeting VI-B locus was dependent on the spacer acquisition machinery of the II-C locus, leading to characteristic interference patterns for both loci. The fourth study shows how the presence of eukaryotic host signals accelerates spacer acquisition, suggesting that environmental determinants play important roles in phage defence strategies. Together, these studies show that type II-C and VI-B CRISPR-Cas systems are active in natural and laboratory conditions, driving coevolution between F. columnare and its virulent phages. Understanding native functioning of CRISPR-Cas is also important for practical applications such as phage therapy.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherJyväskylän yliopisto
dc.relation.ispartofseriesJYU Dissertations
dc.relation.haspart<b>Artikkeli I:</b> Hoikkala, V., De Freitas Almeida, G., Laanto, E., & Sundberg, L.-R. (2019). Aquaculture as a source of empirical evidence for coevolution between CRISPR-Cas and phage. <i>Philosophical Transactions of the Royal Society B: Biological Sciences, 374 (1772), 20180100.</i> <a href="https://doi.org/10.1098/rstb.2018.0100"target="_blank"> DOI: 10.1098/rstb.2018.0100</a>
dc.relation.haspart<b>Artikkeli II:</b> Laanto, E., Hoikkala, V., Ravantti, J., & Sundberg, L.-R. (2017). Long-term genomic coevolution of host-parasite interaction in the natural environment. <i>Nature Communications, 8, 111.</i> <a href="https://doi.org/10.1038/s41467-017-00158-7"target="_blank"> DOI: 10.1038/s41467-017-00158-7</a>
dc.relation.haspart<b>Artikkeli III:</b> Ville Hoikkala, Janne Ravantti, César Díez-Villaseñor, Marja Tiirola, Rachel A. Conrad, Mark J. McBride, Lotta-Riina Sundberg (2020). Cooperation between CRISPR-Cas types enables adaptation in an RNAtargeting system. <i>Submitted manuscript.</i>
dc.relation.haspart<b>Artikkeli IV:</b> Gabriel Almeida, Ville Hoikkala, Janne Ravantti & Lotta-Riina Sundberg (2020). Ecological determinants of phage defence strategy in an opportunistic pathogen. <i>Manuscript.</i>
dc.rightsIn Copyright
dc.subjecttaudinaiheuttajat
dc.subjectbakteerit
dc.subjectbakteeritaudit
dc.subjectkalataudit
dc.subjectvirukset
dc.subjectbakteriofagit
dc.subjectkalat
dc.subjectsopeutuminen
dc.subjectimmuunijärjestelmä
dc.subjectevoluutio
dc.subjectperimä
dc.subjectyhteisevoluutio
dc.subjectadaptation
dc.subjectbacteria
dc.subjectbacteriophage
dc.subjectcoevolution
dc.subjectCRISPR-Cas
dc.subjectimmunity
dc.subject.otherCRISPR-Casen
dc.subject.othercoevolutionen
dc.subject.otherCRISPR-Casfi
dc.subject.otherfaagifi
dc.subject.otheryhteisevoluutiofi
dc.titleMemoirs of a fish pathogen: how CRISPR-Cas captures phage encounters in Flavobacterium columnare
dc.typedoctoral thesis
dc.identifier.urnURN:ISBN:978-951-39-8264-5
dc.contributor.tiedekuntaFaculty of Mathematics and Scienceen
dc.contributor.tiedekuntaMatemaattis-luonnontieteellinen tiedekuntafi
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.relation.issn2489-9003
dc.rights.copyright© The Author & University of Jyväskylä
dc.rights.accesslevelopenAccess
dc.type.publicationdoctoralThesis
dc.subject.ysobacteriaen
dc.subject.ysoadaptationen
dc.subject.ysobacteriophagesen
dc.subject.ysoimmune systemen
dc.subject.ysobakteeritfi
dc.subject.ysoadaptaatiofi
dc.subject.ysobakteriofagitfi
dc.subject.ysoimmuunijärjestelmäfi
dc.format.contentfulltext
dc.rights.urlhttps://rightsstatements.org/page/InC/1.0/


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright