University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Opinnäytteet
  • Väitöskirjat
  • View Item
JYX > Opinnäytteet > Väitöskirjat > View Item

Unraveling Intrinsic Geometry of Sets and Functions in Carnot groups

Thumbnail
View/Open
1.5Mb

Downloads:  
Show download detailsHide download details  
Published in
JYU dissertations
Authors
Moisala, Terhi
Date
2020

 
ISBN
978-951-39-8252-2
Contains publications
  • Artikkeli I: Enrico Le Donne, Sean Li and Terhi Moisala (2019). Infinite-Dimensional Carnot Groups and Gâteaux Differentiability. Journal of Geometric Analysis DOI: 10.1007/s12220-019-00324-x
  • Artikkeli II: Sebastiano Don, Enrico Le Donne, Terhi Moisala and Davide Vittone (2019). A rectifiability result for finite-perimeter sets in Carnot groups. To be published in Indiana University Mathematics Journal arXiv:1912.00493
  • Artikkeli III: Enrico Le Donne and Terhi Moisala (2020). Semigenerated Carnot algebras and applications to sub-Riemannian perimeter. arXiv e-prints arXiv:2004.08619
Keywords
differentiaaligeometria mittateoria ryhmäteoria funktionaalianalyysi monistot
URI

http://urn.fi/URN:ISBN:978-951-39-8252-2

Metadata
Show full item record
Collections
  • Väitöskirjat [3040]

Related items

Showing items with similar title or keywords.

  • Area of intrinsic graphs and coarea formula in Carnot groups 

    Julia, Antoine; Nicolussi Golo, Sebastiano; Vittone, Davide (Springer Science and Business Media LLC, 2022)
    We consider submanifolds of sub-Riemannian Carnot groups with intrinsic C1 regularity (C1H). Our first main result is an area formula for C1H intrinsic graphs; as an application, we deduce density properties for Hausdorff ...
  • Topics in the geometry of non-Riemannian lie groups 

    Nicolussi Golo, Sebastiano (University of Jyväskylä, 2017)
  • Semigenerated Carnot algebras and applications to sub-Riemannian perimeter 

    Le Donne, Enrico; Moisala, Terhi (Springer, 2021)
    This paper contributes to the study of sets of finite intrinsic perimeter in Carnot groups. Our intent is to characterize in which groups the only sets with constant intrinsic normal are the vertical half-spaces. Our ...
  • Space of signatures as inverse limits of Carnot groups 

    Le Donne, Enrico; Züst, Roger (EDP Sciences, 2021)
    We formalize the notion of limit of an inverse system of metric spaces with 1-Lipschitz projections having unbounded fibers. The construction is applied to the sequence of free Carnot groups of fixed rank n and increasing ...
  • A Primer on Carnot Groups: Homogenous Groups, Carnot-Carathéodory Spaces, and Regularity of Their Isometries 

    Le Donne, Enrico (De Gruyter Open, 2017)
    Carnot groups are distinguished spaces that are rich of structure: they are those Lie groups equipped with a path distance that is invariant by left-translations of the group and admit automorphisms that are dilations with ...
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement

Unless otherwise specified, publicly available JYX metadata (excluding abstracts) may be freely reused under the CC0 waiver.
Open Science Centre