Näytä suppeat kuvailutiedot

dc.contributor.authorRasku, Jussi
dc.date.accessioned2019-10-08T13:30:19Z
dc.date.available2019-10-08T13:30:19Z
dc.date.issued2019
dc.identifier.isbn978-951-39-7826-6
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/65790
dc.description.abstractThis thesis was motivated by the desire to make the state-of-the-art vehicle routing problem models and algorithms more convenient for a non-expert to use. Currently, heavy customization is required whenever route optimization technology is adapted to solve new real-life routing problems. A critical part of this tailoring process involves choosing a suitable optimization algorithm and configuring its parameters; this requires developing a deep understanding of vehicle routing problems, their solution algorithms, and the software systems built around them. However, given that such information can be captured and represented as numerical feature values, machine learning can be used to find and exploit the patterns in the variation of algorithm performance. This dissertation proposes a framework for automating the customization of different components and data transformations within a vehicle routing system. This is accompanied by a comprehensive set of empirical experiments that were conducted to verify the feasibility of the proposed approach. As such, this dissertation furthers our understanding of the vehicle routing problem instances, algorithms, and their search spaces. It also provides suggestions and evidence on how to effectively use the automatic algorithm configuration and algorithm selection techniques in an automated vehicle routing system customization context. The findings of this work indicate that meta-optimization is a promising approach that allows more convenient and effective use of existing tools and techniques for solving vehicle routing problems. Overall, logistics plays a major role in modern society, which has made vehicle route optimization an important application of combinatorial optimization. The approach developed in this dissertation can reduce the friction in customization and deployment of optimization systems, thus allowing moving toward more economical, cost-effective, and environmentally friendly road transportation. Keywords: vehicle routing problem, meta-optimization, automatic algorithm configuration, algorithm selection, feature selectionen
dc.description.abstractVäitöskirjan taustalla oli halu tehdä huipputeknisistä ajoneuvojen reititysmalleista ja niiden ratkaisemiseen käytetyistä algoritmeista entistä helpompia käyttää. Nykytilanne vaatii merkittävän määrän asiantuntemusta vaativaa räätälöintiä aina, kun optimointitekniikkaa mukautetaan uusiin tosielämän reititystehtäviin. Kriittinen osa räätälöintiprosessia on sopivan optimointialgoritmin valitseminen ja sen parametrien konfigurointi, mutta tämä edellyttää ajoneuvojen reititystehtävien, niiden ratkaisualgoritmien ja niiden ympärille rakennettujen ohjelmistojärjestelmien syvällistä ymmärtämistä. Kuitenkin, tämä on automatisoitavissa. Koneoppimista voidaan käyttää löytämään ja hyödyntämään säännönmukaisuuksia algoritmien suorituskykyvaihtelussa, edellyttäen että niiden konfigurointiin liittyvät olennaiset seikat voidaan ilmaista numeerisina arvoina. Tämä väitöskirja esittelee mallin, joka mahdollistaa kuljetusten optimointijärjestelmien räätälöinnin ja käyttöönoton osittaisen automatisoinnin. Mallin käyttökelpoisuuden osoittavat kattavat empiiriset kokeet, jotka suoritettiin ehdotetun lähestymistavan toteutettavuuden varmistamiseksi. Väitöskirja lisää ymmärrystämme ajoneuvojen reititystehtävistä, reititysalgoritmeista ja niiden hakuavaruuksista. Se kertoo myös, miten moderneja automaattisia algoritmien konfigurointi- ja valintatekniikoita voidaan käyttää tehostamaan kuljetusten optimointijärjestelmien räätälöintiä. Tulokset osoittavat, että metaoptimointi on lupaava lähestymistapa mahdollistamaan olemassa olevien työkalujen ja tekniikoiden helpomman ja tehokkaamman käytön ajoneuvojen reititystehtäviä ratkaistaessa. Huomionarvoista on, että logistiikan merkittävä rooli nykyaikaisen yhteiskunnan tehokkaan toiminnan mahdollistajana on tehnyt ajoneuvojen reitityksestä tärkeän optimoinnin sovelluksen. Tässä väitöskirjassa kehitetty lähestymistapa on lupaava keino optimointijärjestelmien räätälöinnin ja käyttöönoton nopeuttamiseksi. Täten se osaltaan mahdollistaa entistä taloudellisemman, kustannustehokkaamman ja ympäristöystävällisemmän tieliikenneteen. Avainsanat: ajoneuvojen reititystehtävä, metaoptimointi, automaattinen algoritmien konfigurointi, algoritmien valinta, piirteiden valintafi
dc.relation.ispartofseriesJYU dissertations
dc.relation.haspart<b>Artikkeli I:</b> Rasku, J., Puranen, T., Kalmbach, A., & Kärkkäinen, T. (2018). Automatic Customization Framework for Efficient Vehicle Routing System Deployment. In <i>P. Diez, P. Neittaanmäki, J. Periaux, T. Tuovinen, & O. Bräysy (Eds.), Computational Methods and Models for Transport: New Challenges for the Greening of Transport (pp. 105-120). Springer.</i> <a href="https://doi.org/10.1007/978-3-319-54490-8_8"target="_blank"> DOI: 10.1007/978-3-319-54490-8_8</a>
dc.relation.haspart<b>Artikkeli II:</b> Rasku, J., Kärkkäinen, T., & Hotokka, P. (2013). Solution space visualization as a tool for vehicle routing algorithm development. In <i>M. Collan, J. Hämäläinen, & P. Luukka (Eds.), Proceedings of the Finnish Operations Research Society 40th Anniversary Workshop – FORS40 : Lappeenranta 20.–21.8.2013 (pp. 9-12). Lappeenranta University of Technology.</i> <a href=" http://www.scribd.com/doc/158161305/Proceedings-of-the-FORS40-Workshop"target="_blank"> www.scribd.com/doc/158161305/Proceedings-of-the-FORS40-Workshop</a>
dc.relation.haspart<b>Artikkeli III:</b> Rasku, J., Kärkkäinen, T., & Musliu, N. (2016). Feature Extractors for Describing Vehicle Routing Problem Instances. In <i>B. H. a. A. Qazi, & S. Ravizza (Eds.), SCOR 2016 : Proceedings of the 5th Student Conference on Operational Research (pp. 7:1-7:13). Dagstuhl Publishing.</i> <a href="https://doi.org/10.4230/OASIcs.SCOR.2016.7"target="_blank"> DOI: 10.4230/OASIcs.SCOR.2016.7</a>
dc.relation.haspart<b>Artikkeli IV:</b> Jussi Rasku, Tommi Kärkkäinen, Nysret Musliu. (2019). Meta-Survey and Implementations of Classical Capacitated Vehicle Routing Heuristics with Reproduced Results. <i>Manuscript.</i>
dc.relation.haspart<b>Artikkeli V:</b> Rasku, Jussi; Musliu, Nysret; Kärkkäinen, Tommi (2019). Feature and Algorithm Selection for Capacitated Vehicle Routing Problems. In <i>ESANN 2019 : Proceedings of the 27th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. ESANN, 373-378.</i> <a href="https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2019-110.pdf"target="_blank"> www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2019-110.pdf</a>
dc.relation.haspart<b>Artikkeli VI:</b> Rasku, J., Musliu, N., & Kärkkäinen, T. (2019). On automatic algorithm configuration of vehicle routing problem solvers. <i>Journal on Vehicle Routing Algorithms, 2 (1-4), 1-22.</i> <a href="https://doi.org/10.1007/s41604-019-00010-9"target="_blank"> DOI: 10.1007/s41604-019-00010-9</a>
dc.titleToward Automatic Customization of Vehicle Routing Systems
dc.identifier.urnURN:ISBN:978-951-39-7826-6


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot