Näytä suppeat kuvailutiedot

dc.contributor.authorRasku, Jussi
dc.date.accessioned2019-10-08T13:30:19Z
dc.date.available2019-10-08T13:30:19Z
dc.date.issued2019
dc.identifier.isbn978-951-39-7826-6
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/65790
dc.description.abstractThis thesis was motivated by the desire to make the state-of-the-art vehicle routing problem models and algorithms more convenient for a non-expert to use. Currently, heavy customization is required whenever route optimization technology is adapted to solve new real-life routing problems. A critical part of this tailoring process involves choosing a suitable optimization algorithm and configuring its parameters; this requires developing a deep understanding of vehicle routing problems, their solution algorithms, and the software systems built around them. However, given that such information can be captured and represented as numerical feature values, machine learning can be used to find and exploit the patterns in the variation of algorithm performance. This dissertation proposes a framework for automating the customization of different components and data transformations within a vehicle routing system. This is accompanied by a comprehensive set of empirical experiments that were conducted to verify the feasibility of the proposed approach. As such, this dissertation furthers our understanding of the vehicle routing problem instances, algorithms, and their search spaces. It also provides suggestions and evidence on how to effectively use the automatic algorithm configuration and algorithm selection techniques in an automated vehicle routing system customization context. The findings of this work indicate that meta-optimization is a promising approach that allows more convenient and effective use of existing tools and techniques for solving vehicle routing problems. Overall, logistics plays a major role in modern society, which has made vehicle route optimization an important application of combinatorial optimization. The approach developed in this dissertation can reduce the friction in customization and deployment of optimization systems, thus allowing moving toward more economical, cost-effective, and environmentally friendly road transportation. Keywords: vehicle routing problem, meta-optimization, automatic algorithm configuration, algorithm selection, feature selectionen
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherJyväskylän yliopisto
dc.relation.ispartofseriesJYU Dissertations
dc.relation.haspart<b>Artikkeli I:</b> Rasku, J., Puranen, T., Kalmbach, A., & Kärkkäinen, T. (2018). Automatic Customization Framework for Efficient Vehicle Routing System Deployment. In <i>P. Diez, P. Neittaanmäki, J. Periaux, T. Tuovinen, & O. Bräysy (Eds.), Computational Methods and Models for Transport: New Challenges for the Greening of Transport (pp. 105-120). Springer.</i> <a href="https://doi.org/10.1007/978-3-319-54490-8_8"target="_blank"> DOI: 10.1007/978-3-319-54490-8_8</a>
dc.relation.haspart<b>Artikkeli II:</b> Rasku, J., Kärkkäinen, T., & Hotokka, P. (2013). Solution space visualization as a tool for vehicle routing algorithm development. In <i>M. Collan, J. Hämäläinen, & P. Luukka (Eds.), Proceedings of the Finnish Operations Research Society 40th Anniversary Workshop – FORS40 : Lappeenranta 20.–21.8.2013 (pp. 9-12). Lappeenranta University of Technology.</i> <a href=" http://www.scribd.com/doc/158161305/Proceedings-of-the-FORS40-Workshop"target="_blank"> www.scribd.com/doc/158161305/Proceedings-of-the-FORS40-Workshop</a>
dc.relation.haspart<b>Artikkeli III:</b> Rasku, J., Kärkkäinen, T., & Musliu, N. (2016). Feature Extractors for Describing Vehicle Routing Problem Instances. In <i>B. H. a. A. Qazi, & S. Ravizza (Eds.), SCOR 2016 : Proceedings of the 5th Student Conference on Operational Research (pp. 7:1-7:13). Dagstuhl Publishing.</i> <a href="https://doi.org/10.4230/OASIcs.SCOR.2016.7"target="_blank"> DOI: 10.4230/OASIcs.SCOR.2016.7</a>
dc.relation.haspart<b>Artikkeli IV:</b> Jussi Rasku, Tommi Kärkkäinen, Nysret Musliu. (2019). Meta-Survey and Implementations of Classical Capacitated Vehicle Routing Heuristics with Reproduced Results. <i>Manuscript.</i>
dc.relation.haspart<b>Artikkeli V:</b> Rasku, Jussi; Musliu, Nysret; Kärkkäinen, Tommi (2019). Feature and Algorithm Selection for Capacitated Vehicle Routing Problems. In <i>ESANN 2019 : Proceedings of the 27th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. ESANN, 373-378.</i> <a href="https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2019-110.pdf"target="_blank"> www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2019-110.pdf</a>
dc.relation.haspart<b>Artikkeli VI:</b> Rasku, J., Musliu, N., & Kärkkäinen, T. (2019). On automatic algorithm configuration of vehicle routing problem solvers. <i>Journal on Vehicle Routing Algorithms, 2 (1-4), 1-22.</i> <a href="https://doi.org/10.1007/s41604-019-00010-9"target="_blank"> DOI: 10.1007/s41604-019-00010-9</a>
dc.rightsIn Copyright
dc.titleToward Automatic Customization of Vehicle Routing Systems
dc.typedoctoral thesis
dc.identifier.urnURN:ISBN:978-951-39-7826-6
dc.contributor.tiedekuntaFaculty of Information Technologyen
dc.contributor.tiedekuntaInformaatioteknologian tiedekuntafi
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.relation.issn2489-9003
dc.rights.copyright© The Author & University of Jyväskylä
dc.rights.accesslevelopenAccess
dc.type.publicationdoctoralThesis
dc.format.contentfulltext
dc.rights.urlhttps://rightsstatements.org/page/InC/1.0/


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright