Model nuclear energy density functionals derived from ab initio calculations
This monograph focused on a method to link nuclear energy density functionals to the ab initio solution of the nuclear manybody problem. This method, proposed in Ref. [1], was here discussed in many aspects as well as applied to a stateofart ab initio approach.
We introduced the basis of the density functional theory, paying attention to the concept of generators of the functional. In parallel, we explored the SelfConsistent Green's Function approach as ab initio framework to calculate groundstate energies. We derived the model functional based on the LevyLieb constrained variation, which exploited the response of the nucleus to an external perturbation.
Using the Green's function technique and the NNLOsat chiral interaction in the ab initio Hamiltonian, seven semimagic nuclei were probed with perturbations induced by generators of two and threebody contact interaction (Skyrmelike). We employed the same generators to built model functionals, whereupon the coupling constants were fitted to reproduce the perturbed groundstate energies. Several parametrizations of the functionals were obtained for given choices of generators, selection of data points, and assumed uncertainties. We analysed the derived parametrizations according to their statistical performances, magnitude of the propagated errors, and corresponding nuclear matter description. Two parametrizations emerged as the most promising, but the model functionals built from them did not produce meaningful results. As it turned out, zerorange generators provided a poor description of the chiral interaction. Moreover, the performed error analysis suggested that the actual precision of the ab initio approach may not be sufficient to improve the quality of the novel energy density functionals.
...
ISBN
9789513977757Metadata
Show full item recordCollections
 JYU Dissertations [127]
 Väitöskirjat [3132]
Related items
Showing items with similar title or keywords.

Model nuclear energy density functionals derived from ab initio calculations
Salvioni, G.; Dobaczewski, J.; Barbieri, C.; Carlsson, G.; Idini, A.; Pastore, A. (Institute of Physics, 2020)We present the first application of a new approach, proposed in (2016J.Phys.G:Nucl.Part.Phys.4304LT01) to derive coupling constants of the Skyrme energy density functional (EDF) fromab initioHamiltonian. By perturbing theab ... 
β and γ bands in N = 88, 90, and 92 isotones investigated with a fivedimensional collective Hamiltonian based on covariant density functional theory : Vibrations, shape coexistence, and superdeformation
Majola, S. N. T.; Shi, Z.; Song, B. Y.; Li, Z. P.; Zhang, S. Q.; Bark, R. A.; SharpeySchafer, J. F.; Aschman, D. G.; Bvumbi, S. P.; Bucher, T. D.; Cullen, D. M.; Dinoko, T. S.; Easton, J. E.; Erasmus, N.; Greenlees, P. T.; Hartley, D. J.; Hirvonen, J.; Korichi, A.; Jakobsson, U.; Jones, P.; Jongile, S.; Julin, R.; Juutinen, S.; Ketelhut, S.; Kheswa, B. V.; Khumalo, N. A.; Lawrie, E. A.; Lawrie, J. J.; Lindsay, R.; Madiba, T. E.; Makhathini, L.; Maliage, S. M.; Maqabuka, B.; Malatji, K. L.; Masiteng, P. L.; Mashita, P. I.; Mdletshe, L.; Minkova, A.; Msebi, L.; Mullins, S. M.; Ndayishimye, J.; Negi, D.; Netshiya, A.; Newman, R.; Ntshangase, S. S.; Ntshodu, R.; Nyakó, B. M.; Papka, P.; Peura, P.; Rahkila, P.; Riedinger, L. L.; Riley, M. A.; Roux, D. G.; Ruotsalainen, P.; Saren, J. J.; Scholey, C.; Shirinda, O.; Sithole, M. A.; Sorri, J.; Stankiewicz, M.; Stolze, S.; Timár, J.; Uusitalo, J.; Vymers, P. A.; Wiedeking, M.; Zimba, G. L. (American Physical Society, 2019)A comprehensive systematic study is made for the collective β and γ bands in eveneven isotopes with neutron numbers N=88 to 92 and proton numbers Z=62(Sm) to 70 (Yb). Data, including excitation energies, B(E0) and B(E2) ... 
MeanField Calculation Based on ProtonNeutron Mixed Energy Density Functionals
Sato, Koichi; Dobaczewski, Jacek; Nakatsukasa, Takashi; Satuła, Wojciech (Physical Society of Japan, 2015)We have performed calculations based on the Skyrme energy density functional (EDF) that includes arbitrary mixing between protons and neutrons. In this framework, singleparticle states are generalized as mixtures of ... 
Towards a novel energy density functional for beyondmeanfield calculations with pairing and deformation
Haverinen, Tiia; Kortelainen, Markus; Dobaczewski, J.; Bennaceur, K. (Jagellonian University, 2019)We take an additional step towards the optimization of the novel finiterange pseudopotential at a constrained Hartree–Fock–Bogolyubov level and implement an optimization procedure within an axial code using harmonic ... 
Properties of nuclei in the nobelium region studied within the covariant, Skyrme, and Gogny energy density functionals
Dobaczewski, Jacek; Afanasjev, A. V.; Bender, M.; Robledo, L. M.; Shi, Yue (Elsevier BV, 2015)We calculate properties of the ground and excited states of nuclei in the nobelium region for proton and neutron numbers of 92≤Z≤104 and 144≤N≤156, respectively. We use three different energydensityfunctional (EDF) ...