Malarian leviämistä kuvaavat matemaattiset mallit
Authors
Date
2019Copyright
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Tässä tutkimuksessa esitellään, miten erilaiset matemaattiset malarian leviämistä kuvaavat mallit toimivat erityisesti osastomalleihin keskittyen. Esiteltäviä malleja ovat perusmallit, joissa hyttysillä on pääpaino taudin leviämisen suhteen, ja niihin perustuvat kehittyneemmät mallit, joissa on huomiuoitu myös immuniteetti, lääkeresistanssi, muuttoliikkeet ja ympäristö. Esiteltyjen mallien pohjalta mahdollisiksi jatkokehityskohteiksi havaittiin useampien tekijöiden yhdistäminen yhteen malliin ja ilmastonmuutokseen liittyvät mallit. In this study different mathematical malaria distribution models are outlined focusing especially on compartmental models. Outlined models include basic models, which rely mostly on mosquito traits, and advanced models, which also take into account immunity, drug resistance, immigration and environment. Based on the models in the study, including more factors into a single model and modelling climate change were found as possible aspects to focus on in future models.
Metadata
Show full item recordCollections
- Kandidaatintutkielmat [3986]
Related items
Showing items with similar title or keywords.
-
Should dispersers be fast learners? : Modeling the role of cognition in dispersal syndromes
Liedtke, Jannis; Fromhage, Lutz (John Wiley & Sons, 2021)Both cognitive abilities and dispersal tendencies can vary strongly between individuals. Since cognitive abilities may help dealing with unknown circumstances, it is conceivable that dispersers may rely more heavily on ... -
The Impact of Regularization on Convolutional Neural Networks
Zeeshan, Khaula (2018)Syvä oppiminen (engl. deep learning) on viime aikoina tullut suosituimmaksi koneoppimisen menetelmäksi. Konvoluutio(hermo)verkko on yksi suosituimmista syvän oppimisen arkkitehtuureista monimutkaisiin ongelmiin kuten kuvien ... -
Chaos and its Degradation-Promoting-Based Control in an Antithetic Integral Feedback Circuit
Zand, Armin M.; Tavazoei, Mohammad Saleh; Kuznetsov, Nikolay V. (Institute of Electrical and Electronics Engineers (IEEE), 2022)This letter deals with a novel variant of antithetic integral feedback controller (AIFC) motifs which can feature robust perfect adaptation, a pervasive (desired) ability in natural (synthetic) biomolecular circuits, when ... -
On modelling and stability of axially moving viscoelastic materials
Saksa, Tytti (University of Jyväskylä, 2013) -
Unbiased Inference for Discretely Observed Hidden Markov Model Diffusions
Chada, Neil K.; Franks, Jordan; Jasra, Ajay; Law, Kody J.; Vihola, Matti (Society for Industrial & Applied Mathematics (SIAM), 2021)We develop a Bayesian inference method for diffusions observed discretely and with noise, which is free of discretization bias. Unlike existing unbiased inference methods, our method does not rely on exact simulation ...