Näytä suppeat kuvailutiedot

dc.contributor.authorAndrew, Carrie
dc.contributor.authorHeegaard, Einar
dc.contributor.authorHalvorsen, Rune
dc.contributor.authorKirk, Paul M
dc.contributor.authorHøiland, Klaus
dc.contributor.authorBässler, Claus
dc.contributor.authorDiez, Jeffrey
dc.contributor.authorEgli, Simon
dc.contributor.authorGange, Alan C
dc.contributor.authorHeilmann-Clausen, Jacob
dc.contributor.authorKrisai-Greilhuber, Irmgard
dc.contributor.authorKuyper, Thomas W
dc.contributor.authorNordén, Jenni
dc.contributor.authorRustøen, Fredrik
dc.contributor.authorSenn-Irlet, Beatrice
dc.contributor.authorBüntgen, Ulf
dc.contributor.authorBoddy, Lynne
dc.contributor.authorKauserud, Håvard
dc.date.accessioned2019-01-09T21:27:55Z
dc.date.available2019-01-09T21:27:55Z
dc.date.issued2018
dc.identifier.citationAndrew, C., Heegaard, E., Halvorsen, R., Kirk, P. M., Høiland, K., Bässler, C., Diez, J., Egli, S., Gange, A. C., Heilmann-Clausen, J., Krisai-Greilhuber, I., Kuyper, T. W., Nordén, J., Rustøen, F., Senn-Irlet, B., Büntgen, U., Boddy, L. and Kauserud, H. (2018). Revelations for global change and conservation: determining European fungal species’ patterns via a large-scale fruit body ‘meta-database’. 5th European Congress of Conservation Biology. doi: 10.17011/conference/eccb2018/107110
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/61745
dc.description.abstractPRESENTATION:The driving forces to the geographical structuring of fungi remain notably irresolute, despite well documented trends for a variety of plant and animal groups. This information is critical to planning and mitigating potentially negative consequences of global change, and especially related to conservation. We identified the major geographical and environmental gradients structuring fungal assemblages for two main nutritional modes, saprotrophic and ectomycorrhizal fungi, through the use of 4.9 million European fungal fruit body observations. For both fungal nutritional modes, mean annual temperature correlated most with the first gradient identified that structured assemblages. Soil organic carbon was the highest correlate of the second compositional gradient for ectomycorrhizal fungi, likely an indicator of vegetative- and pH-related covariance. In contrast, a pollution gradient was of secondary importance for saprotrophic fungi, reflected in a high correlation with nitrogen deposition. Compositional gradients and environmental conditions correlated similarly when the data were divided into two time intervals of 1970–1990 and 1991–2010. Indicator species analyses (based on temporal changes in assemblages along the main gradient) did not identify site-specific species, but many species which reflected a high sensitivity in the number of sites they occurred at within a given grouping. The highest rates of compositional change by time suggest targeting higher latitudes and altitudes for a better understanding of fungal dynamics, especially related to climate change. Given the patterns presented here, we suggest further examination of the ranges and dispersal abilities of fungi to assess responses to global change and to aid fungal conservation. POSTER:Species occurrences are increasingly available through citizen science and museum records digitization, creating major ecological resources. Combined with open-source data, our ability to understand the ecology of organisms is unparalleled. Here we describe a European mycological ‘meta-database’ (ClimFun) that has been integrated with open-source environmental and species traits data. Unique fungal species fruit body records, from nine countries, were assembled into 6 million records of 10,000+ species. We, also, explain phenology patterns related to climate variability and the seasonality of fungal fruiting. Mean annual temperature is ubiquitously important, and especially for autumnal fruiting fungi, while spring fruiting fungi are more responsive to primary production. There is significant likelihood that further climatic change, especially in temperature, will impact species’ fruiting patterns at large spatial scales. The ecological implications are diverse, potentially affecting biodiversity, leading to trophic asynchrony, and impacting dispersal. Against a backdrop of global change, these results all demonstrate how big data are advancing the fields of conservation and mycology.
dc.format.mimetypetext/html
dc.language.isoeng
dc.publisherOpen Science Centre, University of Jyväskylä
dc.relation.urihttps://peerageofscience.org/conference/eccb2018/107110/
dc.rightsCC BY 4.0
dc.titleRevelations for global change and conservation: determining European fungal species’ patterns via a large-scale fruit body ‘meta-database’
dc.typeArticle
dc.type.urihttp://purl.org/eprint/type/ConferenceItem
dc.identifier.doi10.17011/conference/eccb2018/107110
dc.type.coarconference paper not in proceedings
dc.description.reviewstatuspeerReviewed
dc.type.versionpublishedVersion
dc.rights.copyright© the Authors, 2018
dc.rights.accesslevelopenAccess
dc.type.publicationconferenceObject
dc.relation.conferenceECCB2018: 5th European Congress of Conservation Biology. 12th - 15th of June 2018, Jyväskylä, Finland
dc.format.contentfulltext
dc.rights.urlhttp://creativecommons.org/licenses/by/4.0/


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

  • ECCB 2018 [712]
    5th European Congress of Conservation Biology. 12th - 15th of June 2018, Jyväskylä, Finland

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0