University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Opinnäytteet
  • Pro gradu -tutkielmat
  • View Item
JYX > Opinnäytteet > Pro gradu -tutkielmat > View Item

Land cover classification from multispectral data using convolutional autoencoder networks

Thumbnail
View/Open
11.Mb

Downloads:  
Show download detailsHide download details  
Authors
Mäyrä, Janne
Date
2018
Discipline
TietotekniikkaMathematical Information Technology
Copyright
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.

 
Syväoppiminen saanut paljon huomiota 2000-luvun puolivälistä alkaen, ja tänä päivänä sen sovelluksia on lähes kaikkialla. Samalla aikavälillä avoimen satelliittikuvadatan määrä on kasvanut, erityisesti Sentinel-2 satelliittien laukaisujen jälkeen. Tätä dataa voidaan hyödyntää useissa kaukokartoitussovellutuksissa, mutta tämän datamäärän analysointi ja käsittely on ihmisille käytännössä mahdotonta. Tässä tutkielmassa testattiin erään tunnetun neuroverkkoarkkitehtuurin, U-Netin, suorituskykyä Rakkolanjoen valuma-alueen maanpeiteluokittelussa monispektrisatelliittikuvista eri luokittelutarkkuuksille. Eri lähtodatoilla saatuja luokittelutarkkuuksia vertailtiin keskenään, ja parhaat luokittelutulokset saatiin hyödyntämällä sekä kaikkea Sentinel-2 dataa että erikseen laskettuja spektri-indeksejä. Huolimatta lähes olemattomasta verkkojen hienosäädöstä ja lyhyestä koulutusajasta saadut luokittelutulokset ovat varsin lupaavia helpoimman luokittelutason (CORINE land cover taso 1) tarkkuuden ollessa yli 90% ja haastavimmallakin yli 75%. Tuotettuja maanpeitekarttoja vertailtiin myös visuaalisesti sekä lähtötietoihin että satelliittikuviin. Johtopäätöksenä voidaan todeta, että U-Net on käyttökelpoinen malli Suomen Ympäristökeskuksen tarpeisiin, ja kehitettyä mallia tullaan jatkokehittämään edelleen. ...
 
Since the mid 2000's, deep learning has received much attention and today its applications are almost everywhere. Around the same timespan the amount of freely available satellite data has grown, especially after Sentinel-2 missions started. This data has a lot of remote sensing applications, but the amount of produced data is practically impossible for humans to analyze or process. This thesis tested the viability of U-Net, a well-known neural network architecture, in land cover classification from multispectral satellite images to different classification levels in the Rakkolanjoki river drainage basin area. Classification results from only visible light bandwidths, all Sentinel-2 bands, precomputed spectral indices and all available features were compared, and best results were achieved with all available features. Even with next to none fine-tuning and short training time, implemented version of U-Net managed to accurately classify over 90% of the pixels for the easiest classification level (CORINE land cover level 1), and around 75% for the hardest level. Produced segmentation maps were also visually observed and compared to both ground truth labels and RGB-composites of the satellite image. As as conclusion, U-Net is a viable baseline for the needs of Finnish Environment Institute, and will later be developed further. ...
 
Keywords
land cover classification neuroverkot kaukokartoitus satelliittikuvat koneoppiminen satelliittikuvaus neural networks remote sensing satellite images machine learning satellite photography
URI

http://urn.fi/URN:NBN:fi:jyu-201812195243

Metadata
Show full item record
Collections
  • Pro gradu -tutkielmat [23424]

Related items

Showing items with similar title or keywords.

  • Tree species classification of drone hyperspectral and RGB imagery with deep learning convolutional neural networks 

    Nezami, Somayeh; Khoramshahi, Ehsan; Nevalainen, Olli; Pölönen, Ilkka; Honkavaara, Eija (MDPI AG, 2020)
    Interest in drone solutions in forestry applications is growing. Using drones, datasets can be captured flexibly and at high spatial and temporal resolutions when needed. In forestry applications, fundamental tasks include ...
  • Chlorophyll Concentration Retrieval by Training Convolutional Neural Network for Stochastic Model of Leaf Optical Properties (SLOP) Inversion 

    Annala, Leevi; Honkavaara, Eija; Tuominen, Sakari; Pölönen, Ilkka (MDPI AG, 2020)
    Miniaturized hyperspectral imaging techniques have developed rapidly in recent years and have become widely available for different applications. Combining calibrated hyperspectral imagery with inverse physically based ...
  • A method for anomaly detection in hyperspectral images, using deep convolutional autoencoders 

    Penttilä, Jeremias (2017)
    Menetelmä poikkeavuuksien havaitsemiseen hyperspektrikuvista käyttäen syviä konvolutiivisia autoenkoodereita. Poikkeavuuksien havaitseminen kuvista, erityisesti hyperspektraalisista kuvista, on hankalaa. Kun ongelmaan ...
  • Classification of Heart Sounds Using Convolutional Neural Network 

    Li, Fan; Tang, Hong; Shang, Shang; Mathiak, Klaus; Cong, Fengyu (MDPI, 2020)
    Heart sounds play an important role in the diagnosis of cardiac conditions. Due to the low signal-to-noise ratio (SNR), it is problematic and time-consuming for experts to discriminate different kinds of heart sounds. Thus, ...
  • The Impact of Regularization on Convolutional Neural Networks 

    Zeeshan, Khaula (2018)
    Syvä oppiminen (engl. deep learning) on viime aikoina tullut suosituimmaksi koneoppimisen menetelmäksi. Konvoluutio(hermo)verkko on yksi suosituimmista syvän oppimisen arkkitehtuureista monimutkaisiin ongelmiin kuten kuvien ...
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement

Unless otherwise specified, publicly available JYX metadata (excluding abstracts) may be freely reused under the CC0 waiver.
Open Science Centre