Näytä suppeat kuvailutiedot

dc.contributor.authorShao, Dongkai
dc.date.accessioned2018-11-30T11:07:57Z
dc.date.available2018-11-30T11:07:57Z
dc.date.issued2018
dc.identifier.isbn978-951-39-7624-8
dc.identifier.otheroai:jykdok.linneanet.fi:1908902
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/60402
dc.description.abstractIn this Thesis I have experimentally studied structural, electronic, and optical properties of hybrids of nanocarbon materials, carbon nanotubes (CNT) and graphene, and certain biomacromolecules. The latter are especially xylan, a type of hemicellulose, and avidin, an important protein. Complexes of CNT with hemicellulose are attractive because the hybrid material is soluble in water. The conductive transport properties of thin films of CNT /hemicellulose have been systematically studied with different experimental tools. These are low temperature DC conduction measurements, Kelvin probe microscopy, and optical conductivity measurements at terahertz frequencies. The results clearly indicate that the CNT/CNT junctions rather than the defects along the CNTs play the key role in the CNT/hc transport mechanism of the thin films. Furthermore, we tested one application of the CNT/hc thin films as transparent conductive thin film (TCF), which combine high conductivity with low adsorption in the visible light region. The results are quite close to the best pure CNT thin films, but still well below the figure of merit of the indium tin oxide which is the most widely used TCF material. The other major research topic in the Thesis is on structural properties of proteins physically adsorbed on carbon nanomaterials. We have experimented with physical adsorption of chimeric avidin on different surfaces, such as silicon, highly oriented pyrolytic graphite, graphene, and suspended multiwalled CNTs. The deposition results are dramatically different between silicon and nanocarbon materials. We observed that the topography difference between graphite (or graphene) and CNTs have significant effect on chi-avidin deposition. Furthermore, we investigated the functionality of avidin after surface adsorption, with respect to its excellent binding capability in the solution phase of biotin.fi
dc.format.extent1 verkkoaineisto (92 sivua, 30 numeroitua sivua) : kuvitettu
dc.language.isoeng
dc.publisherUniversity of Jyväskylä
dc.relation.ispartofseriesResearch report / Department of Physics, University of Jyväskylä
dc.relation.isversionofJulkaistu myös painettuna.
dc.rightsIn Copyright
dc.subject.othercarbon nanotube
dc.subject.othergraphene
dc.subject.othersurface functionalization
dc.subject.otheravidin
dc.subject.otherhemicellulose
dc.subject.otherelectronic property
dc.titleExperimental studies on carbon nanotubes and graphene functionalized via physical adsorption with cellulose and avidin
dc.typedoctoral thesis
dc.identifier.urnURN:ISBN:978-951-39-7624-8
dc.contributor.tiedekuntaFaculty of Mathematics and Scienceen
dc.contributor.tiedekuntaMatemaattis-luonnontieteellinen tiedekuntafi
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.contributor.oppiaineFysiikkafi
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.relation.issn0075-465X
dc.relation.numberinseries2018, 13
dc.rights.accesslevelopenAccess
dc.type.publicationdoctoralThesis
dc.subject.ysonanorakenteet
dc.subject.ysoohutkalvot
dc.subject.ysonanoputket
dc.subject.ysografeeni
dc.subject.ysomakromolekyylit
dc.subject.ysohemiselluloosa
dc.subject.ysoksylaanit
dc.subject.ysoavidiini
dc.subject.ysosähköiset ominaisuudet
dc.subject.ysooptiset ominaisuudet
dc.subject.ysopintailmiöt
dc.subject.ysoadsorptio
dc.rights.urlhttps://rightsstatements.org/page/InC/1.0/


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright