dc.contributor.author | Peuron, Jarkko | |
dc.date.accessioned | 2018-08-02T04:38:06Z | |
dc.date.available | 2018-08-02T04:38:06Z | |
dc.date.issued | 2018 | |
dc.identifier.isbn | 978-951-39-7499-2 | |
dc.identifier.other | oai:jykdok.linneanet.fi:1884773 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/59065 | |
dc.description.abstract | We apply classical gluodynamics to early stages of ultrarelativistic heavy-ion
collisions. We start by giving a brief overview of QCD. Then we proceed to the
space-time evolution of ultrarelativistic heavy-ion collisions in the color glass
condensate framework and go through the basics of real-time gluodynamics
on the lattice in the temporal gauge.
We study the plasmon mass scale in three- and two-dimensional systems by
comparing three different methods to measure the mass scale. The methods
are a formula which can be derived from Hard Thermal Loop effective theory at
leading order (HTL), the effective dispersion relation (DR) and measurement
of the plasma oscillation frequency triggered by the introduction of a uniform
electric field (UE) into the system. We observe that in both systems the
plasmon mass scale decreases like a power law after an occupation number
dependent initial transient time. In 3 dimensions we observe the power law
to be ω2pl ∼ t−2/7, which is predicted by the literature. In 2 dimensions the
observed power law is ω2pl ∼ t−1/3. In both cases the UE and HTL methods
are in rough agreement, and in the three-dimensional case the two agree in
the continuum limit.
As a second way to study the quasiparticle properties, we derive, implement
and test an algorithm which can be used to simulate linearized fluctuations
on top of the classical background. The algorithm is derived by requiring
conservation of Gauss’ law and gauge invariance. We then apply the algorithm
to spectral properties of overoccupied gluodynamics using linear response
theory. We establish the existence of transverse and longitudinal quasiparticles
by extracting their spectral functions. We also extract the dispersion relation,
effective mass, plasmon mass and damping rate of the quasiparticles. Our
results are consistent with the HTL effective theory, but we also observe
effects beyond leading order HTL. | fi |
dc.format.extent | 1 verkkoaineisto (vii, 86 sivua) : kuvitettu | |
dc.language.iso | eng | |
dc.publisher | University of Jyväskylä | |
dc.relation.ispartofseries | Research report / Department of Physics, University of Jyväskylä | |
dc.relation.isversionof | Yhteenveto-osa ja 4 eripainosta julkaistu myös painettuna. | |
dc.rights | In Copyright | |
dc.subject.other | kvanttiväridynamiikka | |
dc.subject.other | kvarkki-gluoniplasma | |
dc.subject.other | plasmonit | |
dc.subject.other | high energy physics | |
dc.subject.other | nuclear theory | |
dc.subject.other | quantum chromodynamics | |
dc.subject.other | lattice gauge theory | |
dc.subject.other | lattice field theory | |
dc.subject.other | classical field theory | |
dc.subject.other | plasmon | |
dc.subject.other | plasmon mass | |
dc.subject.other | quasiparticle | |
dc.subject.other | nonequilibrium | |
dc.subject.other | classical Yang-Mills theory | |
dc.subject.other | thermalization | |
dc.title | Quasiparticle properties of nonequilibrium gluon plasma | |
dc.type | Diss. | |
dc.identifier.urn | URN:ISBN:978-951-39-7499-2 | |
dc.contributor.tiedekunta | Faculty of Mathematics and Science | en |
dc.contributor.tiedekunta | Matemaattis-luonnontieteellinen tiedekunta | fi |
dc.contributor.yliopisto | University of Jyväskylä | en |
dc.contributor.yliopisto | Jyväskylän yliopisto | fi |
dc.contributor.oppiaine | Fysiikka | fi |
dc.relation.issn | 0075-465X | |
dc.relation.numberinseries | 2018, 7 | |
dc.rights.accesslevel | openAccess | |
dc.subject.yso | hiukkasfysiikka | |
dc.subject.yso | kvanttikenttäteoria | |
dc.rights.url | https://rightsstatements.org/page/InC/1.0/ | |