dc.contributor.author | Mondal, Riaz Uddin | |
dc.date.accessioned | 2017-12-11T07:47:08Z | |
dc.date.available | 2017-12-11T07:47:08Z | |
dc.date.issued | 2017 | |
dc.identifier.isbn | 978-951-39-7285-1 | |
dc.identifier.other | oai:jykdok.linneanet.fi:1805096 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/56222 | |
dc.description.abstract | The recent advancements in cellular mobile technology and smart phone usage
have opened opportunities for researchers and commercial companies to
develop ubiquitous low cost localization systems. Radio frequency (RF)
fingerprinting is a popular positioning technique which uses radio signal
strength (RSS) values from already existing infrastructures to provide
satisfactory user positioning accuracy in indoor and densely built outdoor
urban areas where Global Navigation Satellite System (GNSS) signal is poor
and hard to reach. However a major requirement for the RF fingerprinting to
maintain good localization accuracy is the collection and updating of large
training database. The Minimization of Drive Tests (MDT) functionality
proposed by 3GPP LTE Release 10 & 11 has enabled cellular operators to
autonomously gather and update necessary amount of RF fingerprint samples
by utilizing their subscriber user equipments (UEs). The main objective of this
thesis is to propose a framework for RF fingerprint positioning (RFFP) of
outdoor UEs using MDT data and to further improve its performance capability
to provide better localization. In the first part only LTE base-station (BS) RSS
values were used to improve grid-based RF fingerprint positioning (G-RFFP) by
using novel approaches: using overlapped grid-cell layouts (GCL), weighting
based grid-cell unit selection and Artificial Intelligence based G-RFFP method.
In the second part real measurement RSS values from LTE BS and WLAN
access points (APs) were utilized and a generic measurement method referred
to as GMDT was proposed to correlate WLAN RSS to LTE RSS measurements
and its significance to RFFP was studied using a partial fingerprint matching
technique. To remove the computational cost associated with training data
preprocessing a new cluster-based RF fingerprint positioning (C-RFFP) method
was proposed. This thesis provides a good source of information and novel
techniques for cellular operators to build a low cost RF fingerprint positioning
system which can deliver acceptable results in emergency user localization | |
dc.format.extent | 1 verkkoaineisto (68 sivua, 16 sivua useina numerointijaksoina, 26 numeroimatonta sivua) : kuvitettu | |
dc.language.iso | eng | |
dc.publisher | University of Jyväskylä | |
dc.relation.ispartofseries | Jyväskylä studies in computing | |
dc.relation.isversionof | Yhteenveto-osa ja 9 eripainosta julkaistu myös painettuna. | |
dc.rights | In Copyright | |
dc.subject.other | RF fingerprinting | |
dc.subject.other | LTE | |
dc.subject.other | WLAN | |
dc.subject.other | Mahalanobis distance | |
dc.subject.other | Kullback-Leibler divergence | |
dc.subject.other | K-Nearest Neighbor | |
dc.subject.other | K-means clustering | |
dc.subject.other | hierarchical clustering | |
dc.subject.other | Fuzzy C-means Clustering | |
dc.title | Radio frequency fingerprinting for outdoor user equipment localization | |
dc.type | doctoral thesis | |
dc.identifier.urn | URN:ISBN:978-951-39-7285-1 | |
dc.type.dcmitype | Text | en |
dc.type.ontasot | Väitöskirja | fi |
dc.type.ontasot | Doctoral dissertation | en |
dc.contributor.tiedekunta | Faculty of Information Technology | en |
dc.contributor.tiedekunta | Informaatioteknologian tiedekunta | fi |
dc.contributor.yliopisto | University of Jyväskylä | en |
dc.contributor.yliopisto | Jyväskylän yliopisto | fi |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | |
dc.relation.issn | 1456-5390 | |
dc.relation.numberinseries | 271 | |
dc.rights.accesslevel | openAccess | |
dc.type.publication | doctoralThesis | |
dc.subject.yso | paikannus | |
dc.subject.yso | mobiililaitteet | |
dc.subject.yso | radioaallot | |
dc.subject.yso | matkaviestinverkot | |
dc.subject.yso | langattomat lähiverkot | |
dc.subject.yso | koneoppiminen | |
dc.subject.yso | klusterianalyysi | |
dc.rights.url | https://rightsstatements.org/page/InC/1.0/ | |