Show simple item record

dc.contributor.authorMondal, Riaz Uddin
dc.date.accessioned2017-12-11T07:47:08Z
dc.date.available2017-12-11T07:47:08Z
dc.date.issued2017
dc.identifier.isbn978-951-39-7285-1
dc.identifier.otheroai:jykdok.linneanet.fi:1805096
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/56222
dc.description.abstractThe recent advancements in cellular mobile technology and smart phone usage have opened opportunities for researchers and commercial companies to develop ubiquitous low cost localization systems. Radio frequency (RF) fingerprinting is a popular positioning technique which uses radio signal strength (RSS) values from already existing infrastructures to provide satisfactory user positioning accuracy in indoor and densely built outdoor urban areas where Global Navigation Satellite System (GNSS) signal is poor and hard to reach. However a major requirement for the RF fingerprinting to maintain good localization accuracy is the collection and updating of large training database. The Minimization of Drive Tests (MDT) functionality proposed by 3GPP LTE Release 10 & 11 has enabled cellular operators to autonomously gather and update necessary amount of RF fingerprint samples by utilizing their subscriber user equipments (UEs). The main objective of this thesis is to propose a framework for RF fingerprint positioning (RFFP) of outdoor UEs using MDT data and to further improve its performance capability to provide better localization. In the first part only LTE base-station (BS) RSS values were used to improve grid-based RF fingerprint positioning (G-RFFP) by using novel approaches: using overlapped grid-cell layouts (GCL), weighting based grid-cell unit selection and Artificial Intelligence based G-RFFP method. In the second part real measurement RSS values from LTE BS and WLAN access points (APs) were utilized and a generic measurement method referred to as GMDT was proposed to correlate WLAN RSS to LTE RSS measurements and its significance to RFFP was studied using a partial fingerprint matching technique. To remove the computational cost associated with training data preprocessing a new cluster-based RF fingerprint positioning (C-RFFP) method was proposed. This thesis provides a good source of information and novel techniques for cellular operators to build a low cost RF fingerprint positioning system which can deliver acceptable results in emergency user localization
dc.format.extent1 verkkoaineisto (68 sivua, 16 sivua useina numerointijaksoina, 26 numeroimatonta sivua) : kuvitettu
dc.language.isoeng
dc.publisherUniversity of Jyväskylä
dc.relation.ispartofseriesJyväskylä studies in computing
dc.relation.isversionofYhteenveto-osa ja 9 eripainosta julkaistu myös painettuna.
dc.rightsIn Copyright
dc.subject.otherRF fingerprinting
dc.subject.otherLTE
dc.subject.otherWLAN
dc.subject.otherMahalanobis distance
dc.subject.otherKullback-Leibler divergence
dc.subject.otherK-Nearest Neighbor
dc.subject.otherK-means clustering
dc.subject.otherhierarchical clustering
dc.subject.otherFuzzy C-means Clustering
dc.titleRadio frequency fingerprinting for outdoor user equipment localization
dc.typedoctoral thesis
dc.identifier.urnURN:ISBN:978-951-39-7285-1
dc.type.dcmitypeTexten
dc.type.ontasotVäitöskirjafi
dc.type.ontasotDoctoral dissertationen
dc.contributor.tiedekuntaFaculty of Information Technologyen
dc.contributor.tiedekuntaInformaatioteknologian tiedekuntafi
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.contributor.oppiaineTietotekniikkafi
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.relation.issn1456-5390
dc.relation.numberinseries271
dc.rights.accesslevelopenAccess
dc.type.publicationdoctoralThesis
dc.subject.ysopaikannus
dc.subject.ysomobiililaitteet
dc.subject.ysoradioaallot
dc.subject.ysomatkaviestinverkot
dc.subject.ysolangattomat lähiverkot
dc.subject.ysokoneoppiminen
dc.subject.ysoklusterianalyysi
dc.rights.urlhttps://rightsstatements.org/page/InC/1.0/


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright