University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Opinnäytteet
  • Pro gradu -tutkielmat
  • View Item
JYX > Opinnäytteet > Pro gradu -tutkielmat > View Item

Gödelin epätäydellisyyslauseet

Thumbnail
View/Open
464.6 Kb

Downloads:  
Show download detailsHide download details  
Authors
Kosonen, Ossi
Date
2016
Discipline
MatematiikkaMathematics

 
Ossi Kosonen, Gödelin epätäydellisyyslauseet, Gödel's incompleteness , matematiikan pro gradu -tutkielma, 57 sivua, Jyväskylän yliopisto, Matematiikan ja tilastotieteen laitos, syksy 2016. Tämän tutkielman tarkoituksena on todistaa Gödelin kaksi epätäydellisyyslausetta RA-kielessä. Itävaltalais-amerikkalainen Kurt Gödel todisti nimeänsä kantavat lauseet artikkelissaan vuonna 1931. Gödel ei itse varsinaisesti käyttänyt RA-kieltä lauseiden alkuperäisissä todistuksissa, mutta tässä tutkielmassa RA-kieli on valittu formaaliksi kieleksi, koska se perustuu predikaattikielten pohjalle. RA-kielen tarkoitus on formalisoida mahdollisimman hyvin aritmetiikka, joka käytännössä onnistuu mallintamalla luonnollisten lukujen joukko sekä sen laskutoimitukset tälle kielelle. Ensimmäinen epätäydellisyyslause sanoo, että RA-kielessä on olemassa validi kaava, joka ei ole teoreema. Toisen epätäydellisyyslauseen mukaan joukko N sekä sitä imitoiva RA-kieli on tarpeeksi kehittynyt matemaattinen järjestelmä, ettei sen ristiriidattomuutta pystytä todistamaan syntaktisesti. Tällaisen järjestelmän ristiriidattomuutta ei voida siis osoittaa päättelyjonoa konstruoimalla. Tutkielman luvussa 1 esitellään ensin primitiivirekursion avulla primitiivirekursiiviset funktiot ja joukot. Yleisesti voidaan sanoa, että primitiivirekursiivisilla funktioilla ja joukoilla tarkoitetaan sellaisia matemaattisia objekteja, joiden laskettavuus pysyy äärellisillä toimenpiteillä hallussa. Käytännössä tämä näkyy esimerkiksi rajoitetun minimalisaation määritelmässä, jossa minimiä etsitään jostain äärellisestä joukosta. Tämän jälkeen kappaleessa 1.2 konstruoidaan RA-kielen syntaksi sekä semantiikka lähes vastaavalla tavalla kuin predikaattikielissä. Luvussa 2 esitellään Gödelin töiden keskeisimmät saavutukset. Ensin esitetään alkulukuesityksen yksikäsitteisyyteen perustuva Gödel-numerointi, jolla jokainen RA-kielen kaava sekä kaavajono saadaan vastaamaan yksikäsitteistä luonnollista lukua. Tämän avulla osoitetaan suurpiirteisesti, kuinka päättelyn primitiivirekursiivisuus voidaan todistaa. Päättelyn primitiivirekursiivisuus on tärkein, mutta myös vaikein aputulos, jota tarvitaan epätäydellisyyslauseiden todistamisessa. Luvun 2 lopuksi epätäydellisyyslauseiden todistukset pyritään esittämään mahdollisimman eksaktisti, kuitenkin samalla selittäen kansantajuisesti etenkin niiden merkityksestä, sekä mitä epätäydellisyyslauseet kertovat matemaattisista järjestelmistä. Viimeisessä luvussa 3 esitellään Gödelin tulosten seurauksia sekä piirretään mahdollisia uusia suuntaviivoja matemaattisen logiikan tutkimuksessa. ...
Keywords
Gödelin epätäydellisyyslauseet
URI

http://urn.fi/URN:NBN:fi:jyu-201611244750

Metadata
Show full item record
Collections
  • Pro gradu -tutkielmat [24525]
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement

Unless otherwise specified, publicly available JYX metadata (excluding abstracts) may be freely reused under the CC0 waiver.
Open Science Centre