Näytä suppeat kuvailutiedot

dc.contributor.authorKapucu, Fikret Emre
dc.contributor.authorVornanen, Inkeri
dc.contributor.authorMikkonen, Jarno
dc.contributor.authorLeone, Chiara
dc.contributor.authorLenk, Kerstin
dc.contributor.authorTanskanen, Jarno M.
dc.contributor.authorHyttinen, Jari
dc.date.accessioned2016-10-24T07:34:18Z
dc.date.available2016-10-24T07:34:18Z
dc.date.issued2016
dc.identifier.citationKapucu, F. E., Vornanen, I., Mikkonen, J., Leone, C., Lenk, K., Tanskanen, J. M., & Hyttinen, J. (2016). Spectral entropy based neuronal network synchronization analysis based on microelectrode array measurements. <i>Frontiers in Computational Neuroscience</i>, <i>10</i>, Article 112. <a href="https://doi.org/10.3389/fncom.2016.00112" target="_blank">https://doi.org/10.3389/fncom.2016.00112</a>
dc.identifier.otherCONVID_26269800
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/51667
dc.description.abstractSynchrony and asynchrony are essential aspects of the functioning of interconnected neuronal cells and networks. New information on neuronal synchronization can be expected to aid in understanding these systems. Synchronization provides insight in the functional connectivity and the spatial distribution of the information processing in the networks. Synchronization is generally studied with time domain analysis of neuronal events, or using direct frequency spectrum analysis, e.g., in specific frequency bands. However, these methods have their pitfalls. Thus, we have previously proposed a method to analyze temporal changes in the complexity of the frequency of signals originating from different network regions. The method is based on the correlation of time varying spectral entropies (SEs). SE assesses the regularity, or complexity, of a time series by quantifying the uniformity of the frequency spectrum distribution. It has been previously employed, e.g., in electroencephalogram analysis. Here, we revisit our correlated spectral entropy method (CorSE), providing evidence of its justification, usability, and benefits. Here, CorSE is assessed with simulations and in vitro microelectrode array (MEA) data. CorSE is first demonstrated with a specifically tailored toy simulation to illustrate how it can identify synchronized populations. To provide a form of validation, the method was tested with simulated data from integrate-and-fire model based computational neuronal networks. To demonstrate the analysis of real data, CorSE was applied on in vitro MEA data measured from rat cortical cell cultures, and the results were compared with three known event based synchronization measures. Finally, we show the usability by tracking the development of networks in dissociated mouse cortical cell cultures. The results show that temporal correlations in frequency spectrum distributions reflect the network relations of neuronal populations. In the simulated data, CorSE unraveled the synchronizations. With the real in vitro MEA data, CorSE produced biologically plausible results. Since CorSE analyses continuous data, it is not affected by possibly poor spike or other event detection quality. We conclude that CorSE can reveal neuronal network synchronization based on in vitro MEA field potential measurements. CorSE is expected to be equally applicable also in the analysis of corresponding in vivo and ex vivo data analysis.
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherFrontiers Research Foundation
dc.relation.ispartofseriesFrontiers in Computational Neuroscience
dc.rightsCC BY 4.0
dc.subject.othersynchronization
dc.subject.otherspectral entropy
dc.subject.othermouse cortical cells
dc.subject.otherrat cortical cells
dc.subject.otherdeveloping neuronal networks
dc.subject.otherMEA
dc.subject.othermicroelectrode array
dc.titleSpectral entropy based neuronal network synchronization analysis based on microelectrode array measurements
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201610194385
dc.contributor.laitosPsykologian laitosfi
dc.contributor.laitosDepartment of Psychologyen
dc.contributor.oppiainePsykologiafi
dc.contributor.oppiaineMonitieteinen aivotutkimuskeskusfi
dc.contributor.oppiaineHyvinvoinnin tutkimuksen yhteisöfi
dc.contributor.oppiainePsychologyen
dc.contributor.oppiaineCentre for Interdisciplinary Brain Researchen
dc.contributor.oppiaineSchool of Wellbeingen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2016-10-19T06:15:11Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1662-5188
dc.relation.numberinseries0
dc.relation.volume10
dc.type.versionpublishedVersion
dc.rights.copyright© 2016 Kapucu, Välkki, Mikkonen, Leone, Lenk, Tanskanen and Hyttinen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY).
dc.rights.accesslevelopenAccess
dc.type.publicationarticle
dc.subject.ysokorrelaatio
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p16706
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.3389/fncom.2016.00112
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0