Show simple item record

dc.contributor.advisorLehrbäck, Juha
dc.contributor.authorHaapala, Venla
dc.date.accessioned2016-09-10T07:21:40Z
dc.date.available2016-09-10T07:21:40Z
dc.date.issued2016
dc.identifier.otheroai:jykdok.linneanet.fi:1573957
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/51303
dc.description.abstractVenla Haapala, Jäykät liikkeet ja SKS -sääntö (engl. Rigid motions and SAS), matematiikan pro gradu -tutkielma, 57 s., Jyväskylän yliopisto, Matematiikan ja tilastotieteen laitos, kesä 2016. Tämän tutkielman tarkoituksena on selventää euklidisen tasogeometrian ja analyyttisen eli karteesisen geometrian välistä yhteyttä jäykkien liikkeiden tutkimisen kautta. Lisäksi tutkielman tarkoituksena on osoittaa, että jäykkien liikkeiden olemassaolo (ERM) on yhtäpitävä yhtenevyysaksiooman Sivu-Kulma-Sivu (SKS) kanssa, kun muut Hilbertin aksioomat ovat voimassa. Tutkielmassa lähdetään algebrallisista lähtökohdista rakentamaan geometrista mallia, jossa geometriset käsitteet määritetään kunnan ominaisuuksien avulla. Tällä muodostetulla karteesisella tasolla yli valitun kunnan kaikki Hilbertin aksioomat ovat voimassa, kun kunnan ominaisuuksista oletetaan tarpeeksi. Algebrallinen lähestyminen antaa mahdollisuuden ratkaista geometrisia ongelmia laskennallisesti, ja tämänkaltaisen karteesisen koordinaatiston kehittäminen on johtanut nykyaikaisen analyyttisen geometrian syntyyn. Tutkielmassa siis osoitetaan, että analyyttisessä geometriassa on pohjalla täsmälleen samat aksioomat kuin perinteisessä euklidisessa tasogeometriassa. Tutkielmassa määritellään tason jäykät liikkeet, jotka ovat nimensä mukaisesti jäykkiä kuvauksia. Ne ovat injektioita geometrialta itselleen, kuvaavat suorat suoriksi ja säilyttävät välissäolon, kulmien suuruuden ja pituuden. Tutkielmassa osoitetaan, että (ERM):stä seuraa aksiooman (SKS) voimassaolo, kun tasolla on tietyt ominaisuudet. Lisäksi Hilbertin aksioomien ollessa voimassa jäykkiä liikkeitä on olemassa tarpeeksi ja siten (SKS)-aksiooman voimassaolosta seuraa (ERM). Aksiooman (SKS) sijaan Hilbertin aksioomajärjestelmässä voisikin siis itse asiassa olla aksioomana jäykkien liikkeiden olemassaolo. Tutkielmassa tutustutaan syvemmin jäykkiin liikkeisiin aksiomaattisista lähtökohdista isometrioiden kautta. Hilbertin tasolla isometriaoletus eli oletus pituuden säilyttämisestä riittää osoittamaan muut jäykkien liikkeiden ominaisuudet, jolloin isometriset kuvaukset ovat yhtäpitäviä jäykkien liikkeiden kanssa. Yksi tutkielmassa todistettava päätulos liittyen isometrioihin on, että kaikki tason isometriat voidaan muodostaa kolmen heijastuksen avulla. Muita isometrisia kuvauksia ovat siirto, kierto, liukuheijastus ja identtinen kuvaus ja nämä ovat ainoat tason isometriat, mikä myös tullaan todistamaan. Jäykkiä liikkeitä käsitellään euklidisen tason lisäksi Poinarén mallilla, jossa muut Hilbertin aksioomat paralleeliaksioomaa lukuunottamatta ovat voimassa. Poincarén mallia ja sen jäykkiä liikkeitä varten käsitellään lyhyesti ympyräheijastuksia eli inversioita ja niiden tärkeimpiä ominaisuuksia. Tutkielmassa osoitetaan, että Poincarén mallilla on olemassa tarpeeksi jäykkiä liikkeitä, jonka seurauksena saadaan aksiooman (SKS) voimassaolo Poincarén mallilla tutkielman aiempien tulosten seurauksena. Tutkielman lopussa on vielä tiivis silmäys siihen, miten euklidista ja analyyttista geometriaa sekä yhtenevyyskuvauksia käsitellään lukion pitkän matematiikan kurssikirjoissa. Näiden kahden geometrisen mallin suhde jää useimmissa oppikirjoissa epäselväksi. Tutkielmassa pohditaan muutamia keinoja tämän yhteyden selventämiseksi kuten aksioomien perusteellisempi esittely, uudet opetusmallit ja kehittynyt opetusteknologia.fi
dc.format.extent1 verkkoaineisto (57 sivua)
dc.format.mimetypeapplication/pdf
dc.language.isofin
dc.rightsJulkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.fi
dc.rightsThis publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.en
dc.subject.othertasogeometria
dc.subject.otherjäykät liikkeet
dc.subject.otherSivu-Kulma-Sivu -sääntö
dc.titleJäykät liikkeet ja Sivu-Kulma-Sivu -sääntö
dc.identifier.urnURN:NBN:fi:jyu-201609104062
dc.type.ontasotPro gradu -tutkielmafi
dc.type.ontasotMaster’s thesisen
dc.contributor.tiedekuntaMatemaattis-luonnontieteellinen tiedekuntafi
dc.contributor.tiedekuntaFaculty of Sciencesen
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.date.updated2016-09-10T07:21:40Z
dc.rights.accesslevelopenAccessfi
dc.type.publicationmasterThesis
dc.contributor.oppiainekoodi4041
dc.subject.ysoanalyyttinen geometria
dc.format.contentfulltext
dc.type.okmG2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record