Näytä suppeat kuvailutiedot

dc.contributor.authorHelske, Jouni
dc.date.accessioned2016-03-11T10:48:18Z
dc.date.available2016-03-11T10:48:18Z
dc.date.issued2015
dc.identifier.otheroai:jykdok.linneanet.fi:1524457
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/49043
dc.descriptionArtikkeliväitöskirja. Sisältää yhteenveto-osan ja neljä artikkelia.fi
dc.descriptionArticle dissertation. Contains an introduction part and four articles.en
dc.description.abstractA large amount of data collected today is in the form of a time series. In order to make realistic inferences based on time series forecasts, in addition to point predictions, prediction intervals or other measures of uncertainty should be presented. Multiple sources of uncertainty are often ignored due to the complexities involved in accounting them correctly. In this dissertation, some of these problems are reviewed and some new solutions are presented. A state space approach is also advocated for an e cient and exible framework for time series forecasting, which can be used for combining multiple types of traditional time series and other models.
dc.format.extentVerkkoaineisto (28, [57] sivua)
dc.language.isoeng
dc.publisherUniversity of Jyväskylä
dc.relation.ispartofseriesReport / University of Jyväskylä. Department of Mathematics and Statistics
dc.relation.haspart<b>Article I:</b> Helske, J., & Nyblom, J. (2015). Improved Frequentist Prediction Intervals for Autoregressive Models by Simulation. In S. J. Koopman, & N. Shephard (Eds.), <I>Unobserved Components and Time Series Econometrics</I> (pp. 291-309). Oxford University Press.
dc.relation.haspart<b>Article II:</b> Helske, J. and Nyblom, J. (2014). Improved frequentist prediction intervals for ARMA models by simulation. In Knif, J. and Pape, B., editors, <I>Contributions to Mathematics, Statistics, Econometrics, and Finance: Essays in Honour of Professor Seppo Pynnönen</I>, (pp. 71-86). Acta Wasaensia, 296. Vaasa: Vaasan Yliopisto.
dc.relation.haspart<b>Article III:</b> Helske, J., Nyblom, J., Ekholm, P., & Meissner, K. (2013). Estimating aggregated nutrient fluxes in four Finnish rivers via Gaussian state space models. <I>Environmetrics</I>, 24 (4), 237-247. doi:10.1002/env.2204
dc.relation.haspart<b>Article IV:</b> Helske, J. (2015). KFAS: Exponential family state space models in R. (Submitted; not available online)
dc.relation.isversionofJulkaistu myös painettuna.
dc.rightsIn Copyright
dc.subject.otherTime-series analysis
dc.subject.otherPrediction theory
dc.subject.otherInterpolation
dc.subject.othertila-avaruusmallit
dc.subject.othertime series
dc.subject.otherprediction
dc.subject.otherforecasting
dc.subject.otheruncertainty
dc.subject.otherstate space models
dc.titlePrediction and interpolation of time series by state space models
dc.typeDiss.
dc.identifier.urnURN:NBN:fi:jyu-201603111829
dc.type.ontasotVäitöskirjafi
dc.type.ontasotDoctoral dissertationen
dc.contributor.tiedekuntaFaculty of Mathematics and Scienceen
dc.contributor.tiedekuntaMatemaattis-luonnontieteellinen tiedekuntafi
dc.contributor.laitos
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.contributor.oppiaineTilastotiedefi
dc.relation.issn1457-8905
dc.relation.numberinseries152
dc.rights.accesslevelopenAccess
dc.subject.ysoaikasarja-analyysi
dc.subject.ysoaikasarjat
dc.subject.ysomallintaminen
dc.subject.ysoennusteet
dc.subject.ysoepävarmuus
dc.subject.ysoR-kieli
dc.rights.urlhttps://rightsstatements.org/page/InC/1.0/


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright