University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Opinnäytteet
  • Väitöskirjat
  • View Item
JYX > Opinnäytteet > Väitöskirjat > View Item

Big high-dimensional data analysis with diffusion maps

Thumbnail
View/Open
325.4Kb

Downloads:  
Show download detailsHide download details  
Published in
Jyväskylä studies in computing
Authors
Wolf, Guy
Date
2013
Discipline
Tietotekniikka

 
Publisher
University of Jyväskylä
ISBN
978-951-39-5534-2
ISSN Search the Publication Forum
1456-5390
Contains publications
  • Article I: Guy Wolf, Aviv Rotbart, Gil David, and Amir Averbuch. Coarse-grained localized diffusion. Applied and Computational Harmonic Analysis, 33(3):388– 400, 2012. DOI: 10.1016/j.acha.2012.02.004
  • Article II: Moshe Salhov, Guy Wolf, Amir Averbuch. Patch-to-Tensor Embedding. Applied and Computational Harmonic Analysis, 33(2):182–203, 2012. DOI: 10.1016/j.acha.2011.11.003
  • Article III: Guy Wolf and Amir Averbuch. Linear-Projection Diffusion on Smooth Euclidean Submanifolds. Applied and Computational Harmonic Analysis, 34(1):1–14, 2013. DOI: 10.1016/j.acha.2012.03.003
  • Article IV: Moshe Salhov, Amit Bermanis, Guy Wolf, Amir Averbuch. Approximate Patch-to-Tensor Embedding via Dictionary Construction. Submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013.
  • Article V: Yaniv Shmuelli, Guy Wolf, Amir Averbuch. Updating kernel methods in spectral decomposition by affinityperturbations. Linear Algebra and its Applications, 437(6):1356–1365, 2012. DOI: 10.1016/j.laa.2012.04.035
Keywords
big data data analysis manifold learning diffusion maps data analyysimenetelmät algoritmit koneoppiminen
URI

http://urn.fi/URN:ISBN:978-951-39-5534-2

Metadata
Show full item record
Collections
  • Väitöskirjat [3032]

Related items

Showing items with similar title or keywords.

  • High-dimensional Big Data processing with dictionary learning and diffusion maps 

    Rotbart, Aviv (University of Jyväskylä, 2015)
    Algorithms for modern Big Data analysis deal with both massive amount of sam- ples and a large number of features (high-dimension). One way to cope with these challenges is to assume and discover the existence of ...
  • Knowledge discovery using diffusion maps 

    Sipola, Tuomo (University of Jyväskylä, 2013)
  • Dimensionality reduction framework for detecting anomalies from network logs 

    Sipola, Tuomo; Juvonen, Antti; Lehtonen, Joel (CRL Publishing, 2012)
    Dynamic web services are vulnerable to multitude of intrusions that could be previously unknown. Server logs contain vast amounts of information about network traffic, and finding attacks from these logs improves the ...
  • Adaptive framework for network traffic classification using dimensionality reduction and clustering 

    Juvonen, Antti; Sipola, Tuomo (IEEE, 2012)
    Information security has become a very important topic especially during the last years. Web services are becoming more complex and dynamic. This offers new possibilities for attackers to exploit vulnerabilities by inputting ...
  • Algorithms and software for biological multiscale image analysis 

    Paavolainen, Lassi (University of Jyväskylä, 2013)
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement

Unless otherwise specified, publicly available JYX metadata (excluding abstracts) may be freely reused under the CC0 waiver.
Open Science Centre