Multidimensional scaling using multilayer perceptron
Tämän tutkimuksen tarkoituksena on avata neuroverkon ja
moniulotteisen skaalauksen käsitteitä sekä demonstroida kuinka näitä voidaan käyttää yhdessä.
Tutkielmassa suoritetaan konstruktio, jossa MLP-verkko koulutetaan moniulotteisen skaalauksen
keinoin suorittamaan dimension pienennystä. Algoritmia testataan neljässä eri testitapauksessa. The objective of this thesis is to introduce the reader to the concepts of neural network
and multidimensional scaling and to demonstrate how these two can be used together.
The thesis introduces a construction in which a multilayer perceptron is trained by means
of multidimensional scaling in order to perform dimensionality reduction. The algorithm is
tested in four different test experiments.
Asiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Pro gradu -tutkielmat [29743]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
One Dimensional Convolutional Neural Networks for Seizure Onset Detection Using Long-term Scalp and Intracranial EEG
Wang, Xiaoshuang; Wang, Xiulin; Liu, Wenya; Chang, Zheng; Kärkkäinen, Tommi; Cong, Fengyu (Elsevier, 2021)Epileptic seizure detection using scalp electroencephalogram (sEEG) and intracranial electroencephalogram (iEEG) has attracted widespread attention in recent two decades. The accurate and rapid detection of seizures not ... -
One-Dimensional Convolutional Neural Networks Combined with Channel Selection Strategy for Seizure Prediction Using Long-Term Intracranial EEG
Wang, Xiaoshuang; Zhang, Guanghui; Wang, Ying; Yang, Lin; Liang, Zhanhua; Cong, Fengyu (World Scientific, 2022)Seizure prediction using intracranial electroencephalogram (iEEG) has attracted an increasing attention during recent years. iEEG signals are commonly recorded in the form of multiple channels. Many previous studies generally ... -
One and Two Dimensional Convolutional Neural Networks for Seizure Detection Using EEG Signals
Wang, Xiaoshuang; Ristaniemi, Tapani; Cong, Fengyu (IEEE, 2020)Deep learning for the automated detection of epileptic seizures has received much attention during recent years. In this work, one dimensional convolutional neural network (1D-CNN) and two dimensional convolutional neural ... -
Multilayer perceptron training with multiobjective memetic optimization
Nieminen, Paavo (University of Jyväskylä, 2016)Machine learning tasks usually come with several mutually conflicting objectives. One example is the simplicity of the learning device contrasted with the accuracy of its performance after learning. Another common example ... -
Detector-based visual analysis of time-series data
Wartiainen, Pekka (University of Jyväskylä, 2015)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.