dc.contributor.author | Koberidze, Manana | |
dc.date.accessioned | 2012-01-24T20:20:53Z | |
dc.date.available | 2012-01-24T20:20:53Z | |
dc.date.issued | 2010 | |
dc.identifier.other | oai:jykdok.linneanet.fi:1192640 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/37243 | |
dc.description.abstract | Current thesis presents computational studies of the torsional twist in single
walled carbon nanotubes (SWCNTs). Since SWCNTs can be viewed as rolled
up graphene sheets, our aim is to explain their torsion constants via shear mod-
ulus of graphene in pristine, and single- and double vacancy cases. In addition,
fundamental energy gap response to torsion is investigated. Calculations of
defected structures is computationally expensive as it requires larger simula-
tion cell with large number of atoms. To reduce the cost of computations we
take the advantage of chiral symmetry of nanotubes instead of translational one,
and faster performance of density-functional tight-binding method compared to
other computational methods. Shear modulus calculations show that its value
approaches that of graphene for large diameter tubes and is most sensitive to
size in case of armchair tubes. Vacancies diminish shear modulus for most of the
nanotubes and concentration-induced decrease has linear character regardless
of chirality. Studies on direction-dependent shearing of graphene reveals that in
the presence of double vacancy shear modulus has the biggest fluctuations from
its average value compared to pristine and single vacancy instances. Torsion
significantly modifies electronic structure as well - metallic tubes undergo tran-
sition to semiconducting state, during which band gap change is linear, peaking
and decreasing to zero again for most of the tubes. Results give the ground
for assumption that for large diameter tubes the peak values, reached during
torsion, converge. | |
dc.format.extent | 48 sivua | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.rights | This publication is copyrighted. You may download, display and
print it for Your own personal use. Commercial use is
prohibited. | en |
dc.rights | Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty. | fi |
dc.subject.other | single-walled carbon nanotube | |
dc.subject.other | density-functional tight-binding | |
dc.subject.other | shear modulus | |
dc.subject.other | graphene | |
dc.subject.other | vacancy | |
dc.title | Computational studies of torsional properties of single-walled carbon nanotubes | |
dc.identifier.urn | URN:NBN:fi:jyu-201201241066 | |
dc.type.dcmitype | Text | en |
dc.type.ontasot | Pro gradu -tutkielma | fi |
dc.type.ontasot | Master’s thesis | en |
dc.contributor.tiedekunta | Matemaattis-luonnontieteellinen tiedekunta | fi |
dc.contributor.tiedekunta | Faculty of Sciences | en |
dc.contributor.laitos | Fysiikan laitos | fi |
dc.contributor.laitos | Department of Physics | en |
dc.contributor.yliopisto | University of Jyväskylä | en |
dc.contributor.yliopisto | Jyväskylän yliopisto | fi |
dc.date.updated | 2012-01-24T20:20:54Z | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | masterThesis | |
dc.contributor.oppiainekoodi | 402 | |
dc.subject.yso | nanoputket | |
dc.subject.yso | grafeeni | |
dc.format.content | fulltext | |
dc.type.okm | G2 | |