University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Opinnäytteet
  • Väitöskirjat
  • View Item
JYX > Opinnäytteet > Väitöskirjat > View Item

Ca-P-O thin film preparation, modification and characterisation

Thumbnail
View/Open
19. Mb

Downloads:  
Show download detailsHide download details  
Published in
Research report / Department of Physics, University of Jyväskylä
Authors
Arcot Rajashekar, Ananda Sagari
Date
2011
Discipline
Fysiikka

 
Bioceramics are biocompatible ceramic materials, that interact with biological systems of the body to treat, strengthen or replace body functions. Most conventional bioceramics are oxide ceramics, glass ceramics and calcium phosphate ceramics. Among these calcium phosphates, synthetic hydroxyapatite has been extensively studied due to its biomimetic properties similar to that of natural bone. One approach to prepare synthetic hydroxyapatite is to first deposit amorphous Ca-P-O thin film and then by means of post deposition annealing initiate the formation of hydroxyapatite crystals to the film. In addition to the correct film composition and crystalline structure, other surface properties such as wettability and surface nano- and microtopography are very significant for the biocompatibility. In this study Ca-P-O thin films were deposited using two different techniques, ion beam sputtering and atomic layer deposition (ALD). Films deposited using both techniques were amorphous after deposition. For sputter deposited films, the Ca/P atomic ratio determined by means of ion beam analysis approached stoichiometric hydroxyapatite when hydroxyapatite powder doped with extra phosphorous was used as the sputtering target. Though the sputtered films showed good biocompatibility in cell attachment studies, the dissolution of as-deposited films in cell culture medium is a disadvantage. The surface of as-deposited and annealed thin films deposited using ALD were locally modified by high and low energy irradiation. After low energy ion irradiation the as-deposited films showed an increase in hydrophilicity, which was determined using contact angle measurements, and also greater spreading of mouse pre-osteoblast cells. The effect of surface topography was studied by abrading Ti metal substrates to different roughnesses before depositing 2–50 nm thick ALD Ca-P-O films on them. Ti was selected in order to combine the biocompatibility of Ca-P-O thin-films with the mechanical strength of the Ti metal substrate. Ca-P-O films deposited on smoother substrates showed higher Ca/P atomic ratios than those on the rough substrates, demonstrating the influence of roughness on the film growth during the deposition. As-deposited Ca-P-O films acted as equally good cell culture substrate as untreated Ti samples used as a control. After post deposition annealing at 800 C, Ca-P-O films were crystallized on Si substrates and showed filopodic morphology of pre-osteoblast cells. Films on Ti showed also filopodic morphology of cells after 700 C annealing but at 800 C the number of cells substantially dropped, most likely due to formation of a less biocompatible TiO2 rutile phase on the surface. ...
Publisher
University of Jyväskylä
ISBN
978-951-39-4586-2
ISSN Search the Publication Forum
0075-465X
Keywords
biokeraamit atomikasvatusmenetelmät bioceramics titanium silicon prosthesis biofysiikka lääketieteellinen fysiikka ohutkalvot pinnoitteet keraamiset materiaalit implantit tekonivelet silikoni titaani kevytmetallit
URI

http://urn.fi/URN:ISBN:978-951-39-4586-2

Metadata
Show full item record
Collections
  • Väitöskirjat [3295]

Related items

Showing items with similar title or keywords.

  • High-quality superconducting titanium nitride thin film growth using infra-red pulsed laser deposition 

    Torgovkin, Andrii; Chaudhuri, Saumyadip; Ruhtinas, Aki; Lahtinen, Manu; Sajavaara, Timo; Maasilta, Ilari (IOP Publishing, 2018)
    Superconducting titanium nitride (TiN) thin films were deposited on magnesium oxide, sapphire and silicon nitride substrates at 700 °C, using a pulsed laser deposition (PLD) technique, where infrared (1064 nm) pulses from ...
  • Influence of B content on microstructure, phase composition and mechanical properties of CVD Ti(B,N) coatings 

    Tkadletz, Michael; Schalk, Nina; Lechner, Alexandra; Hatzenbichler, Lukas; Holec, David; Hofer, Christina; Deluca, Marco; Sartory, Bernhard; Lyapin, Andrey; Julin, Jaakko; Czettl, Christoph (Elsevier, 2022)
    Within this work the effect of the B content on the microstructure, phase composition and mechanical properties of CVD Ti(B,N) coatings is investigated. Ti(B,N) coatings with B contents from 0 (fcc-TiN) to ∼5, ∼15, ∼30, ...
  • Experimental study of quantum fluctuations in titanium nanowires in highly resistive environment 

    Lehtinen, Janne (2009)
  • Mechanical and optical properties of as-grown and thermally annealed titanium dioxide from titanium tetrachloride and water by atomic layer deposition 

    Ylivaara, Oili M.E.; Langner, Andreas; Liu, Xuwen; Schneider, Dieter; Julin, Jaakko; Arstila, Kai; Sintonen, Sakari; Ali, Saima; Lipsanen, Harri; Sajavaara, Timo; Hannula, Simo-Pekka; Puurunen, Riikka L. (Elsevier, 2021)
    The use of thin-films made by atomic layer deposition (ALD) is rapidly growing in the field of optical sensing. ALD TiO2 has been widely characterized for its physical and optical properties, but systematic information ...
  • Exploring the self-assembly of resorcinarenes : from molecular level interactions to mesoscopic structures 

    Helttunen, Kaisa (University of Jyväskylä, 2012)
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement

Unless otherwise specified, publicly available JYX metadata (excluding abstracts) may be freely reused under the CC0 waiver.
Open Science Centre