dc.contributor.author | Bostan, Irina | |
dc.date.accessioned | 2011-02-25T06:43:13Z | |
dc.date.available | 2011-02-25T06:43:13Z | |
dc.date.issued | 2010 | |
dc.identifier.other | oai:jykdok.linneanet.fi:1149505 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/26598 | |
dc.description.abstract | In this work the basic formalism of non-equilibrium Green’s functions is presented and then applied to study a Ward identity in linear response theory, namely the frequency sum-rule. It can be proven that the frequency sum-rule is satisfied when the quantities involved are calculated using perturbation theory within a conserving approximation for the self-energy. To illustrate this equality
along with other properties of the response function, a numerical application that solves the Kadanoff-Baym equations for systems of Hubbard chains was used. The results showed that the frequency sum-rule was satisfied to the same extent by all the conserving approximations used as by the exact diagonalization numerical results. The density response function was analyzed diagrammatically
for a series of conserving approximations for the self-energy and this demonstrated that even for a first order in perturbation theory approximation for the self-energy, the response function has a corresponding complex, third order in the perturbation diagrammatic structure. | |
dc.format.extent | 46 sivua | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.rights | This publication is copyrighted. You may download, display and
print it for Your own personal use. Commercial use is
prohibited. | en |
dc.rights | Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty. | fi |
dc.subject.other | condensed matter | |
dc.subject.other | many-body theory | |
dc.title | Study of linear response in Hubbard chains using Many-body Perturbation Theory | |
dc.identifier.urn | URN:NBN:fi:jyu-201102251820 | |
dc.type.dcmitype | Text | en |
dc.type.ontasot | Pro gradu -tutkielma | fi |
dc.type.ontasot | Master’s thesis | en |
dc.contributor.tiedekunta | Matemaattis-luonnontieteellinen tiedekunta | fi |
dc.contributor.tiedekunta | Faculty of Sciences | en |
dc.contributor.laitos | Fysiikan laitos | fi |
dc.contributor.laitos | Department of Physics | en |
dc.contributor.yliopisto | University of Jyväskylä | en |
dc.contributor.yliopisto | Jyväskylän yliopisto | fi |
dc.contributor.oppiaine | Fysiikka | fi |
dc.contributor.oppiaine | Physics | en |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | masterThesis | |
dc.contributor.oppiainekoodi | 4021 | |
dc.format.content | fulltext | |
dc.type.okm | G2 | |