Näytä suppeat kuvailutiedot

dc.contributor.authorPohjalainen, Ilkka
dc.date.accessioned2010-12-27T02:19:12Z
dc.date.available2010-12-27T02:19:12Z
dc.date.issued2010
dc.identifier.otheroai:jykdok.linneanet.fi:1145261
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/25740
dc.description.abstractThe IGISOL Laser Ion Source Trap (LIST) is a method in which a supersonic gas jet is used to transport thermalized nuclear reaction products from a gas cell into a sextupole radio frequency ion guide (SPIG) while removing any non-neutral part of the jet by a positively biased repeller electrode. Specific atom species are resonantly re-ionized with laser radiation in the SPIG which enables the study of exotic nuclei without isobaric contamination. In the first part of this work the repelling effect is studied through a series of ion optical Monte-Carlo simulations. The simulations were able to support the hypothesis that the constant collisions between the fast moving buffer gas atoms and the ions provides additional momentum to overcome potential barriers of several tens of volts, explaining the need for high repelling electrode potentials in practice. The simulations were also used to investigate the differences between helium and argon buffer gases and different repelling geometries. The experimental behaviour of the repelling efficiency as a function of repelling potential was qualitatively reproduced. The second part of this work concentrated on the supersonic gas jet formation and the parameters that affect the gas jet properties, in particular the width. For an efficient transportation of atoms from the gas cell to the SPIG the gas jet needs to be well collimated. The gas jet behaviour was investigated with two nozzle shapes and diameters in varying pressure environments by photographing plasma afterglow in the gas expanding from an arc discharge ion guide. It was found that the jet width is strongly dependent on background pressure and independent of the nozzle shape and gas cell pressure. Because the gas jet exhibited a collimated behaviour only with increasing background pressure, a new de Laval type of nozzle was introduced. This nozzle produced a narrow collimated jet structure at background pressures as low as 0.33 mbar.
dc.format.extent61, 33 sivua
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rightsIn Copyrighten
dc.subject.otherLIST
dc.subject.otherkaasusuihku
dc.titleExperimental gas jet studies for the IGISOL LIST method and simulation modeling
dc.typemaster thesis
dc.identifier.urnURN:NBN:fi:jyu-201012273220
dc.type.dcmitypeTexten
dc.type.ontasotPro gradu -tutkielmafi
dc.type.ontasotMaster’s thesisen
dc.contributor.tiedekuntaMatemaattis-luonnontieteellinen tiedekuntafi
dc.contributor.tiedekuntaFaculty of Sciencesen
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.contributor.oppiaineFysiikkafi
dc.contributor.oppiainePhysicsen
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.rights.accesslevelopenAccessfi
dc.type.publicationmasterThesis
dc.contributor.oppiainekoodi4021
dc.subject.ysoydinfysiikka
dc.format.contentfulltext
dc.rights.urlhttps://rightsstatements.org/page/InC/1.0/
dc.type.okmG2


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright